Author:
Wang Jinming,Liu Aihong,Zhang Shangdi,Gao Shandian,Rashid Muhammad,Li Youquan,Liu Junlong,Ma Quanying,Li Zhi,Liu Zhijie,Luo Jianxun,Guan Guiquan,Yin Hong
Abstract
Abstract
Background
Bovine babesiosis is caused by protozoan parasites of the genus Babesia and presents a wide spectrum of clinical manifestations. Disease severity depends on the type of Babesia species infection. Generally, B. bovis and B. bigemina are considered as the causative agents of bovine babesiosis; in addition, Babesia ovata and B. major are a group of benign bovine piroplasms. Therefore, species identification is important for diagnosis, epidemiological investigations and follow-up management.
Methods
Real-time PCR combined with high resolution melting (RT-PCR-HRM) analysis was used to detect and discriminate four Babesia species infective to cattle, including Babesia bovis, B. bigemina, B. major and B. ovata. The melting profiles and melting temperatures (Tm) of the amplicon targeting 18S rRNA revealed differences that can discriminate the four Babesia spp. Sensitivity and specificity of the analytical method were evaluated using 50 blood samples collected from experimentally infected cattle and 240 blood samples from areas where bovine babesiosis is an issue.
Results
RT-PCR-HRM analysis allowed to detect and discriminate four Babesia spp. (B. bovis, B. bigemina, B. major and B. ovata), which were responsible for bovine babesiosis in China. The protocol was validated with DNA samples from experimentally infected cattle and field infection in cattle.
Conclusions
Our results indicate that RT-PCR-HRM is a fast and robust tool for the simultaneous detection and discrimination of four Babesia species that are responsible for bovine babesiosis in China. This approach is applicable for both field and experimental samples, thus it could be useful in epidemiological investigations and diagnoses of bovine babesiosis.
Funder
National Key R&D Program of China
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference39 articles.
1. Levine ND. Progress in taxonomy of the Apicomplexan protozoa. J Protozool. 1988;35:518–20.
2. Wang CJ. Bovine piroplasmosis. In: Division of Veterinary and Animal Husbandry, Minstry of Agriculture, editor. The diseases of domestic animals in China. Beijing: Academic Press; 1993. p. 381–90.
3. Yin H, Lu WS, Luo JX. Babesiosis in China. Trop Anim Health Prod. 1997;29(Suppl.):11S–5S.
4. Liu JL, Guan GQ, Liu AH, Li YQ, Yin H, Luo J. A PCR method targeting internal transcribed spacers: the simultaneous detection of Babesia bigemina and Babesia bovis in cattle. Acta Parasitol. 2014;59:132–8.
5. Niu QL, Liu ZJ, Yu PF, Yang JF, Abdallah MO, Guan GQ, et al. Genetic characterization and molecular survey of Babesia bovis, Babesia bigemina and Babesia ovata in cattle, dairy cattle and yaks in China. Parasit Vectors. 2015;8:518.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献