Mapping the baseline prevalence of lymphatic filariasis across Nigeria

Author:

Eneanya Obiora A.,Fronterre Claudio,Anagbogu Ifeoma,Okoronkwo Chukwu,Garske Tini,Cano Jorge,Donnelly Christl A.

Abstract

Abstract Introduction The baseline endemicity profile of lymphatic filariasis (LF) is a key benchmark for planning control programmes, monitoring their impact on transmission and assessing the feasibility of achieving elimination. Presented in this work is the modelled serological and parasitological prevalence of LF prior to the scale-up of mass drug administration (MDA) in Nigeria using a machine learning based approach. Methods LF prevalence data generated by the Nigeria Lymphatic Filariasis Control Programme during country-wide mapping surveys conducted between 2000 and 2013 were used to build the models. The dataset comprised of 1103 community-level surveys based on the detection of filarial antigenemia using rapid immunochromatographic card tests (ICT) and 184 prevalence surveys testing for the presence of microfilaria (Mf) in blood. Using a suite of climate and environmental continuous gridded variables and compiled site-level prevalence data, a quantile regression forest (QRF) model was fitted for both antigenemia and microfilaraemia LF prevalence. Model predictions were projected across a continuous 5 × 5 km gridded map of Nigeria. The number of individuals potentially infected by LF prior to MDA interventions was subsequently estimated. Results Maps presented predict a heterogeneous distribution of LF antigenemia and microfilaraemia in Nigeria. The North-Central, North-West, and South-East regions displayed the highest predicted LF seroprevalence, whereas predicted Mf prevalence was highest in the southern regions. Overall, 8.7 million and 3.3 million infections were predicted for ICT and Mf, respectively. Conclusions QRF is a machine learning-based algorithm capable of handling high-dimensional data and fitting complex relationships between response and predictor variables. Our models provide a benchmark through which the progress of ongoing LF control efforts can be monitored.

Funder

Commonwealth Scholarship Commission

Medical Research Council

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference65 articles.

1. Federal Ministry of Health Nigeria. Neglected Tropical Diseases Nigeria Multi-Year Master Plan 2015–2020. Abuja: Federal Ministry of Health Nigeria; 2016.

2. Expanded special project for elimination of neglected tropical diseases W-A. ESPEN - NTD portal Brazzaville, Republic of Congo; 2017. http://espen.afro.who.int/countries/nigeria . Accessed Jan 2019.

3. Michael E, Malecela-Lazaro MN, Kabali C, Snow LC, Kazura JW. Mathematical models and lymphatic filariasis control: endpoints and optimal interventions. Trends Parasitol. 2006;22:226–33.

4. World Health Organization. Monitoring and Epidemiological Assessment of Mass Drug Administration for the Global Programme to Eliminate Lymphatic Filariasis (GPELF). A Manual for National Elimination Programmes WHO/HTM/NTD/PCT/2011.4. Geneva: World Health Organization; 2011.

5. Weil GJ, Lammie PJ, Weiss N. The ICT filariasis test: a rapid-format antigen test for diagnosis of bancroftian filariasis. Parasitol Today. 1997;13:401–4.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3