Downregulated RPS-30 in Angiostrongylus cantonensis L5 plays a defensive role against damage due to oxidative stress

Author:

Sun Wei-Wei,Yan Xiu-Mei,Shi Qing,Zhang Yuan-Jiao,Huang Jun-Ting,Huang Hui-Cong,Shi Hong-Fei,Yan Bao-Long

Abstract

Abstract Background Eosinophilic meningitis, caused by fifth-stage larvae of the nematode (roundworm) Angiostrongylus cantonensis, is mainly attributed to the contribution of eosinophils to tissue inflammatory responses in helminthic infections. Eosinophils are associated with the killing of helminths via peroxidative oxidation and hydrogen peroxide generated by the dismutation of superoxide produced during respiratory bursts. In contrast, when residing in the host with high level of eosinophils, helminthic worms have evolved to attenuate eosinophil-mediated tissue inflammatory responses for their survival in the hosts. In a previous study we demonstrated that the expression of the A. cantonensis RPS 30 gene (Acan-rps-30) was significantly downregulated in A. cantonensis L5 roundworms residing in cerebrospinal fluid with a high level of eosinophils. Acan-RPS-30 is a protein homologous to the human Fau protein that plays a pro-apoptotic regulatory role and may function in protecting worms from oxidative stress. Methods The isolation and structural characterization of Acan-RPS-30 were performed using rapid amplification of cDNA ends (RACE), genome walking and bioinformatics. Quantitative real-time-PCR and microinjection were used to detect the expression patterns of Acan-rps-30. Feeding RNA interference (RNAi) was used to knockdown the apoptosis gene ced-3. Microinjection was performed to construct transgenic worms. An oxidative stress assay was used to determine the functions of Acan-RPS-30. Results Our results showed that Acan-RPS-30 consisted of 130 amino acids. It was grouped into clade V with C. elegans in the phylogenetic analysis. It was expressed ubiquitously in worms and was downregulated in both L5 larvae and adult A. cantonensis. Worms expressing pCe-rps30::Acan-rps-30::rfp, with the refractile “button-like” apoptotic corpses, were susceptible to oxidative stress. Apoptosis genes ced-3 and ced-4 were both upregulated in the transgenic worms. The phenotype susceptible to oxidative stress could be converted with a ced-3 defective mutation and RNAi. rps-30−/− mutant worms were resistant to oxidative stress, with ced-3 and ced-4 both downregulated. The oxidative stress-resistant phenotype could be rescued and inhibited by through the expression of pCe-rps30::Acan-rps-30::rfp in rps-3−/− mutant worms. Conclusion In C. elegans worms, downregulated RPS-30 plays a defensive role against damage due to oxidative stress, facilitating worm survival by regulating downregulated ced-3. This observation may indicate the mechanism by which A. cantonensis L5 worms, with downregulated Acan-RPS-30, survive in the central nervous system of humans from the immune response of eosinophils. Graphical Abstract

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3