Characterization of lamina propria remodeling in pediatric eosinophilic esophagitis using second harmonic generation microscopy

Author:

Haugen Ezekiel J.,Locke Andrea K.,Correa Hernán,Baba Justin S.,Mahadevan-Jansen Anita,Hiremath GirishORCID

Abstract

AbstractEosinophilic esophagitis (EoE) is a chronic inflammatory condition characterized by an intense infiltration of eosinophils into the esophageal epithelium. When not adequately controlled, eosinophilic inflammation can lead to changes in components of the extracellular matrix (ECM) of the lamina propria. Particularly, alterations to the collagen fiber matrix can lead to lamina propria fibrosis (LPF), which plays an important role in the fibrostenotic complications of EoE. Current approaches to assess LPF in EoE are prone to inter-observer inconsistencies and provide limited insight into the structural remodeling of the ECM. An objective approach to quantify LPF can eliminate inter-observer inconsistencies and provide novel insights into the fibrotic transformation of the lamina propria in EoE. Second harmonic generation (SHG) microscopy is a powerful modality for objectively quantifying disease associated alterations in ECM collagen structure that is finding increasing use for clinical research. We used SHG with morphometric analysis (SHG-MA) to characterize lamina propria collagen fibers and ECM porosity in esophageal biopsies collected from children with active EoE (n = 11), inactive EoE (n = 11), and non-EoE (n = 11). The collagen fiber width quantified by SHG-MA correlated positively with peak eosinophil count (r = 0.65, p < 0.005) and histopathologist scoring of LPF (r = 0.52, p < 0.005) in the esophageal biopsies. Patients with active EoE had a significant enlargement of ECM pores compared to inactive EoE and non-EoE (p < 0.005), with the mean pore area correlating positively with EoE activity (r = 0.76, p < 0.005) and LPF severity (r = 0.65, p < 0.005). These results indicate that SHG-MA can be utilized to objectively characterize and provide novel insights into lamina propria ECM structural remodeling in children with EoE, which could aid in monitoring disease progression.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

National Institute of Allergy and Infectious Diseases

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3