Functional modular networks identify the pivotal genes associated with morphine addiction and potential drug therapies

Author:

Jiang Yage,Wei Donglei,Xie Yubo

Abstract

Abstract Background Chronic morphine usage induces lasting molecular and microcellular adaptations in distinct brain areas, resulting in addiction-related behavioural abnormalities, drug-seeking, and relapse. Nonetheless, the mechanisms of action of the genes responsible for morphine addiction have not been exhaustively studied. Methods We obtained morphine addiction-related datasets from the Gene Expression Omnibus (GEO) database and screened for Differentially Expressed Genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) functional modularity constructs were analyzed for genes associated with clinical traits. Venn diagrams were filtered for intersecting common DEGs (CDEGs). Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for functional annotation. Protein–protein interaction network (PPI) and CytoHubba were used to screen for hub genes. Potential treatments for morphine addiction were figured out with the help of an online database. Results Sixty-five common differential genes linked to morphine addiction were identified, and functional enrichment analysis showed that they were primarily involved in ion channel activity, protein transport, the oxytocin signalling pathway, neuroactive ligand-receptor interactions, and other signalling pathways. Based on the PPI network, ten hub genes (CHN2, OLIG2, UGT8A, CACNB2, TIMP3, FKBP5, ZBTB16, TSC22D3, ISL1, and SLC2A1) were checked. In the data set GSE7762, all of the Area Under Curve (AUC) values for the hub gene Receiver Operating Characteristic (ROC) curves were greater than 0.8. We also used the DGIdb database to look for eight small-molecule drugs that might be useful for treating morphine addiction. Conclusions The hub genes are crucial genes associated with morphine addiction in the mouse striatum. The oxytocin signalling pathway may play a vital role in developing morphine addiction.

Funder

National Key Research and Development Program

Guangxi Key Research and Development Program

Guangxi Natural Science Foundation Key Project

Publisher

Springer Science and Business Media LLC

Subject

Anesthesiology and Pain Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3