Author:
Morikawa Masanori,Maeda Noriaki,Komiya Makoto,Kobayashi Toshiki,Urabe Yukio
Abstract
Abstract
Background
Ankle orthotics decreases the maximal vertical jump height. It is essential to maximize jump height and minimize ground contact time during athletic performance. However, the effect of ankle orthotics on athletic performance has not been reported. We aimed to investigate the effect of ankle orthotics on squat jump (SJ), countermovement jump (CMJ), and repetitive rebound jump (RJ) performance.
Methods
Twenty healthy volunteers performed SJ, CMJ, repetitive RJ under no-orthosis and two orthotic conditions (orthosis 1 and orthosis 2). During SJ and CMJ, we measured the vertical ground reaction force and calculated the following parameters: jump height, peak vertical ground reaction force, rate of force development, net vertical impulse, and peak power. During repetitive RJ, the jump height, contact time, and RJ index were measured. A two-dimensional motion analysis was used to quantify the ankle range of motion in the sagittal plane during SJ, CMJ, and repetitive RJ.
Results
Multivariate analysis of variance and the post hoc test showed orthosis 2 significantly decreased in the vertical jump height (p = 0.003), peak power (p = 0.007), and maximum plantarflexion and dorsiflexion angles (p < 0.001) during SJ Ankle orthoses 1 and 2 did not influence to the RJ performance compared to those using the no-orthosis condition. Additionally, orthosis 2 significantly decreased the jump height at the end of repetitive RJ (p = 0.046).
Conclusions
These results suggest that ankle orthosis do not affect average RJ performance but should be considered when performing repetitive jumps frequently.
Publisher
Springer Science and Business Media LLC
Subject
Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine
Reference22 articles.
1. Barelds I, van den Broek AG, Huisstede B. Ankle bracing is effective for primary and secondary prevention of acute ankle injuries in athletes: a systematic review and meta-analyses. Sports Med. 2018;48:2775–84.
2. Newman TM, Vairo GL, Buckley WE. The comparative effects of ankle bracing on functional performance. J Sport Rehabil. 2018;27:491–502.
3. Lee WC, Kobayashi T, Choy BT, Leung AK. Comparison of custom-moulded ankle brace with hinged joints and off-the-shelf ankle braces in preventing ankle sprain in lateral cutting movements. Prosthet Orthot Int. 2012;36:190–5.
4. Maeda N, Urabe Y, Tsutsumi S, Numano S, Morita M, Takeuchi T, et al. Effect of semi-rigid and soft ankle braces on static and dynamic postural stability in young male adults. J Sports Sci Med. 2016;15:352–7.
5. Maeda N, Yukio U, Sasadai J, Shuhei N. Effect of soft and semi-rigid ankle braces on kinematic and kinetic changes of the knee and ankle joints after forward and lateral drop landing in healthy young women. Isokinet Exerc Sci. 2019;27:1–7.