A novel comparative study of NNAR approach with linear stochastic time series models in predicting tennis player's performance

Author:

Almarashi Abdullah M.,Daniyal Muhammad,Jamal Farrukh

Abstract

Abstract Background Prediction models have gained immense importance in various fields for decision-making purposes. In the context of tennis, relying solely on the probability of winning a single match may not be sufficient for predicting a player's future performance or ranking. The performance of a tennis player is influenced by the timing of their matches throughout the year, necessitating the incorporation of time as a crucial factor. This study aims to focus on prediction models for performance indicators that can assist both tennis players and sports analysts in forecasting player standings in future matches. Methodology To predict player performance, this study employs a dynamic technique that analyzes the structure of performance using both linear and nonlinear time series models. A novel approach has been taken, comparing the performance of the non-linear Neural Network Auto-Regressive (NNAR) model with conventional stochastic linear and nonlinear models such as Auto-Regressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS), and TBATS (Trigonometric Seasonal Decomposition Time Series). Results The study finds that the NNAR model outperforms all other competing models based on lower values of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). This superiority in performance metrics suggests that the NNAR model is the most appropriate approach for predicting player performance in tennis. Additionally, the prediction results obtained from the NNAR model demonstrate narrow 95% Confidence Intervals, indicating higher accuracy and reliability in the forecasts. Conclusion In conclusion, this study highlights the significance of incorporating time as a factor when predicting player performance in tennis. It emphasizes the potential benefits of using the NNAR model for forecasting future player standings in matches. The findings suggest that the NNAR model is a recommended approach compared to conventional models like ARIMA, ETS, and TBATS. By considering time as a crucial factor and employing the NNAR model, both tennis players and sports analysts can make more accurate predictions about player performance.

Funder

Deanship Scientific Research(DSR), King Abdulaziz University, Jeddah,

Publisher

Springer Science and Business Media LLC

Reference27 articles.

1. Alison K, Barry S, Brain C, Aonghus L, Jakim B, Cailbhe D. Prediction equations for marathon performance: a systematic review. Int J Sports Physiol Perform. 2019;14(9):1159–69.

2. Ye J, Luo D, Shu C. Online learner performance prediction method based on short text emotion enhancement. Acta Automatica Sinica. 2020;46(9):14.

3. Tian Z, Fan Q, Wang C. Application of deep learning in bridge response prediction and health monitoring. J Railway Eng Soc. 2021;38(6):6.

4. Jones AM, Vanhatalo A. The’Critical power’ concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sports Med. 2017;47(1):1–14.

5. Malhotra RK. Sleep, recovery, and performance in sports. Neurol Clin. 2017;35(3):547–57.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3