Abstract
Abstract
Background
This study compares ball in play (BiP) analyses and both whole game (WG) and quarter averaged data for physical and technical demands of sub-elite Australian football (AF) players competing in the West Australian Football League across playing positions.
Methods
Microsensor data were collected from 33 male AF players in one club over 19 games of the 2019 season. BiP time periods and technical performance data (e.g., kicks) were acquired from the Champion Data timeline of statistics, and time matched to the microsensor data. Linear mixed modelling was utilised to establish differences between maximum BiP periods and averaged data.
Results
The analyses indicated significant differences (p < 0.0001) between maximum BiP and WG data for all metrics and all playing position (half-line, key position, and midfielders). The percentage difference was greatest for very high-speed running (171–178%), accelerations (136–142%), high-intensity efforts (128–139%), and high-speed running (134–147%) compared to PlayerLoad™ (50–56%) and total running distance (56–59%). No significant (p > 0.05) differences were evident for maximum BiP periods when they were compared between playing positions (i.e., half line vs key position vs midfield). Significant (p < 0.0001) differences were also noted between maximum BiP phases and averaged data across all 4 quarters, for each microsensor metric, and all playing positions. Technical actions (e.g., kicks and handballs) were observed in 21–48% of maximum BiP phases, depending on playing positions and microsensor metric assessed, with kicks and handballs constituting > 50% of all actions performed.
Conclusions
These results show the BiP analysis method provides a more accurate assessment of the physical demands and technical actions performed by AF players, which are underestimated when using averaged data. The data presented in this study may be used to inform the design and monitoring of representative practice, ensuring that athletes are prepared for both the physical and technical demands of the most demanding passages of play.
Publisher
Springer Science and Business Media LLC
Subject
Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine
Reference32 articles.
1. Johnston RD, Black GM, Harrison PW, Murray NB, Austin DJ. Applied sport science of Australian football: a systematic review. Sport Med. 2018;48(7):1673–94.
2. Coutts AJ, Quinn J, Hocking J, Castagna C, Rampinini E. Match running performance in elite Australian rules football. J Sci Med Sport. 2010;13(5):543–8.
3. Coutts AJ, Kempton T, Sullivan C, Bilsborough J, Cordy J, Rampinini E. Metabolic power and energetic costs of professional Australian football match-play. J Sci Med Sport. 2015;18(2):219–24.
4. Johnston RJ, Watsford ML, Austin D, Pine MJ, Spurrs RW. Player acceleration and deceleration profiles in professional Australian football. J Sports Med Phys Fitness. 2015;55(9):931–9.
5. Scott MTU, Scott TJ, Kelly VG. The validity and reliability of global positioning systems in team sport: a brief review. J Strength Cond Res. 2016;30(5):1470–90.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献