The effects of Rhodopseudomonas palustris PSB06 and CGA009 with different agricultural applications on rice growth and rhizosphere bacterial communities

Author:

Luo Luyun,Wang Pei,Zhai Zhongying,Su Pin,Tan Xinqiu,Zhang Deyong,Zhang Zhuo,Liu YongORCID

Abstract

Abstract In recent years, the photosynthetic bacteria have been used widely in agriculture, but the effects of different agricultural applications on crop rhizosphere microorganism and crops are lack. In this study, we provide new insights into the structure and composition of the rice root-associated microbiomes as well as the effect on crop of the Rhodopseudomonas palustris(R. palustris) PSB06 and CGA009 at the rice seedling stage with seed immersion and root irrigation. Compare with CK group, the length of stem, the peroxidase (POD), and superoxide dismutase (SOD) activities in PSB06 treatment group was significantly higher, while the length of stem in CGA009 treatment group was significantly higher. The POD and SOD activities in CGA009 treatment groups only were higher slightly than the CK group. In the study, the dominant phyla were Proteobacteria (51.95–61.66%), Bacteroidetes (5.40–9.39%), Acidobacteria (4.50–10.52%), Actinobacteria (5.06–8.14%), Planctomycetes (2.90–4.48%), Chloroflexi (2.23–5.06%) and Firmicutes (2.38–7.30%), accounted for 87% bacterial sequences. The principal coordinate analysis (pCoA) and mantel results showed the two application actions of R. palustris CGA009 and PSB06 had significant effects on rice rhizosphere bacterial communities (p < 0.05). The PSB06 can significantly promote the rice growth and enhance stress resistance of rice at the seedling stage, while the R. palustris CGA009 has no significant effect on rice. Dissimilarity test and canonical correspondence analysis (CCA) results showed that the TN and pH were the key factors affecting rice rhizosphere bacterial community in the seedling stage. This study will provide some guidance advices for the study of the microecological regulation of photosynthetic bacteria on crops.

Funder

the National Key Research Development Program of China

the Agricultural Science and Technology Innovation Fund Project in Hunan Province

the Project of Hunan Agricultural Science and Technology Innovation Fund

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3