Antibiofilm activity of biosynthesized silver and copper nanoparticles using Streptomyces S29

Author:

Elshaer Soha,Shaaban Mona I.ORCID

Abstract

AbstractMicrobial resistance and biofilm formation have been considered as the main problems associated with microbial resistance. Several antimicrobial agents cannot penetrate biofilm layers and cannot eradicate microbial infection. Therefore, the aim of this study is the biological synthesis of silver and copper nanoparticles to assess their activities on bacterial attachment and on the viability of dormant cells within the biofilm matrix. Ag-NPs and Cu-NPs were biosynthesized using Streptomyces isolate S29. The biologically synthesized Ag-NPs and Cu-NPs exhibited brown and blue colors and were detected by UV/Vis spectrophotometry at 476 and 594 nm, respectively. The Ag-NPs showed an average size of 10–20 nm as indicated by TEM, and 25–35 nm for Cu-NPs. Both Ag-NPs and Cu-NPs were monodispersed with a polydispersity index of 0.1–0.546 and zeta potential were − 29.7, and − 33.7 mv, respectively. The biologically synthesized Ag-NPs and Cu-NPs significantly eliminated bacterial attachment and decreased the viable cells in the biofilm matrix as detected by using crystal violet and tri-phenyl tetrazolium chloride assays. Furthermore, Ag-NPs and Cu-NPs significantly eradicated mature biofilms developed by various Gram-negative pathogens, including A. baumannii, K. pneumoniae and P. aeruginosa standard strains and clinical isolates. Data were also confirmed at the molecular level with prominent elimination of biofilm gene expression carO, bssS and pelA in A. baumannii, K. pneumoniae and P. aeruginosa, respectively compared to untreated cells under the same conditions. As indicated, Ag-NPs and Cu-NPs could be used as adjuvant therapy in eradication of antibiotic resistance and biofilm matrix associated with Gram-negative bacterial infection. Graphical Abstract

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3