Exploration of genes encoding KEGG pathway enzymes in rhizospheric microbiome of the wild plant Abutilon fruticosum

Author:

Abulfaraj Aala A.ORCID,Shami Ashwag Y.,Alotaibi Nahaa M.,Alomran Maryam M.,Aloufi Abeer S.,Al-Andal Abeer,AlHamdan Nawwaf R.,Alshehrei Fatimah M.,Sefrji Fatmah O.,Alsaadi Khloud H.,Abuauf Haneen W.,Alshareef Sahar A.,Jalal Rewaa S.ORCID

Abstract

AbstractThe operative mechanisms and advantageous synergies existing between the rhizobiome and the wild plant species Abutilon fruticosum were studied. Within the purview of this scientific study, the reservoir of genes in the rhizobiome, encoding the most highly enriched enzymes, was dominantly constituted by members of phylum Thaumarchaeota within the archaeal kingdom, phylum Proteobacteria within the bacterial kingdom, and the phylum Streptophyta within the eukaryotic kingdom. The ensemble of enzymes encoded through plant exudation exhibited affiliations with 15 crosstalking KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathways. The ultimate goal underlying root exudation, as surmised from the present investigation, was the biosynthesis of saccharides, amino acids, and nucleic acids, which are imperative for the sustenance, propagation, or reproduction of microbial consortia. The symbiotic companionship existing between the wild plant and its associated rhizobiome amplifies the resilience of the microbial community against adverse abiotic stresses, achieved through the orchestration of ABA (abscisic acid) signaling and its cascading downstream effects. Emergent from the process of exudation are pivotal bioactive compounds including ATP, D-ribose, pyruvate, glucose, glutamine, and thiamine diphosphate. In conclusion, we hypothesize that future efforts to enhance the growth and productivity of commercially important crop plants under both favorable and unfavorable environmental conditions may focus on manipulating plant rhizobiomes.

Funder

Deanship of Scientific Research, Princess Nourah Bint Abdulrahman University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3