Culture shock: microglial heterogeneity, activation, and disrupted single-cell microglial networks in vitro

Author:

Cadiz Mika P.,Jensen Tanner D.,Sens Jonathon P.,Zhu Kuixi,Song Won-Min,Zhang Bin,Ebbert Mark,Chang Rui,Fryer John D.ORCID

Abstract

Abstract Background Microglia, the resident immune cells of the brain, play a critical role in numerous diseases, but are a minority cell type and difficult to genetically manipulate in vivo with viral vectors and other approaches. Primary cultures allow a more controlled setting to investigate these cells, but morphological and transcriptional changes upon removal from their normal brain environment raise many caveats from in vitro studies. Methods To investigate whether cultured microglia recapitulate in vivo microglial signatures, we used single-cell RNA sequencing (scRNAseq) to compare microglia freshly isolated from the brain to primary microglial cultures. We performed cell population discovery, differential expression analysis, and gene co-expression module analysis to compare signatures between in vitro and in vivo microglia. We constructed causal predictive network models of transcriptional regulators from the scRNAseq data and identified a set of potential key drivers of the cultured phenotype. To validate this network analysis, we knocked down two of these key drivers, C1qc and Prdx1, in primary cultured microglia and quantified changes in microglial activation markers. Results We found that, although often assumed to be a relatively homogenous population of cells in culture, in vitro microglia are a highly heterogeneous population consisting of distinct subpopulations of cells with transcriptional profiles reminiscent of macrophages and monocytes, and are marked by transcriptional programs active in neurodegeneration and other disease states. We found that microglia in vitro presented transcriptional activation of a set of “culture shock genes” not found in freshly isolated microglia, characterized by strong upregulation of disease-associated genes including Apoe, Lyz2, and Spp1, and downregulation of homeostatic microglial markers, including Cx3cr1, P2ry12, and Tmem119. Finally, we found that cultured microglia prominently alter their transcriptional machinery modulated by key drivers from the homeostatic to activated phenotype. Knockdown of one of these drivers, C1qc, resulted in downregulation of microglial activation genes Lpl, Lyz2, and Ccl4. Conclusions Overall, our data suggest that when removed from their in vivo home environment, microglia suffer a severe case of “culture shock”, drastically modulating their transcriptional regulatory network state from homeostatic to activated through upregulation of modules of culture-specific genes. Consequently, cultured microglia behave as a disparate cell type that does not recapitulate the homeostatic signatures of microglia in vivo. Finally, our predictive network model discovered potential key drivers that may convert activated microglia back to their homeostatic state, allowing for more accurate representation of in vivo states in culture. Knockdown of key driver C1qc partially attenuated microglial activation in vitro, despite C1qc being only weakly upregulated in culture. This suggests that even genes that are not strongly differentially expressed across treatments or preparations may drive downstream transcriptional changes in culture.

Funder

Mayo Foundation for Medical Education and Research

Ben Dov Family Luminescence Foundation

Ed and Ethel Moore Alzheimer’s Disease Research Program of Florida Department of Health

Coins for Alzheimer's Research Trust

CureAlz Foundation

JW and HM Goodman Family Foundation

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Molecular Biology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3