Abstract
AbstractThis paper is centered on a numerical solution of non-Newtonian Casson magneto-nanofluid flow underlying an axisymmetric surface through a non-Darcian porous medium with heat generation/absorption. Using similarity transformations, the system of PDEs with the corresponding boundary conditions are reduced to system of nonlinear ODEs. The Chebyshev pseudospectral (CPS) method is used to get a numerical solution for the formulated differential system. Comparisons of the present numerical results with previously published results are made, and fine agreements for some the considered values of parameters were noted. Two cases of nanofluid are considered. The first case is Newtonian nanofluid, water with suspended gold (Au) or alumina (Al2O3) nanoparticles, and representative results are obtained for β → ∞ and Pr = 6.785 (the Prandtl number of water). The second case is non-Newtonian bio-nanofluid, blood with suspended gold (Au) or alumina (Al2O3) nanoparticles, and representative results are obtained for β = 0.1 and Pr = 25 (the Prandtl number of blood). The variation of different physical parameters on non-dimensional velocity and temperature fields as well as the skin friction coefficient and the Nusselt number are discussed. It is demonstrated that the implication of a nanoparticle into bio-fluid can modify the stream design. Also, the nanoparticles with high thermal conductivity (gold) have better enhancement on heat transfer compared to alumina, i.e., the effectiveness of adding gold to the water and blood is higher than adding alumina. One of the most important applications of nanotechnology in the field of medicine is the use of nanoparticles (gold molecules) in chemotherapy to get rid of cancer cells.
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Choi, S.U.S.: Enhancing Thermal Conductivity of Fluids with NanoparticlesASME Int. Mech. Eng. Congress and Exp, San Francisco (1995)
2. Pozhar, L.A., Kontar, E.P., Hua, M.Z.C.: Transport properties of nanosystems: viscosity of nanofluids confined in slit nanopores. J. Nanosci. and Nanotech. 2(2), 209–227 (2002)
3. Pozhar, L.A.: Structure and dynamics of nanofluids: theory and simulations to calculate viscosity. Phys. Rev. E. 61(2), 1432–1446 (2000)
4. Pozhar, L.A., Gubbins, K.E.: Quasi hydrodynamics of nanofluid mixtures. Phys. Rev. E. 56(5), 5367–5396 (1997)
5. Ghassemi, M., Shahidian, A., Ahmadi, G., Hamian, S.: A new effective thermal conductivity model for a bio-nanofluid (blood with nanoparticle Al2O3). Int. Comm. Heat Mass Transfer. 37, 929–934 (2010)
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献