1. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, vol. 66, pp. 99–105. ASME, FED 231/MD, San Francisco (1995)
2. Ittedi, S., Ramya, D., Joga, S.: MHD heat transfer of nanofluids over a stretching sheet with slip effects and chemical reaction. Int. J. of Lat. Eng. Res. Appl. 02, 10–20 (2017)
3. Sreekala, B., Janardhan, K., Ramya, D., Shravani, I.: MHD boundary layer nanofluid flow of heat transfer over a nonlinear stretching sheet presence of thermal radiation and partial slip with suction. Glob. J. of Pure Appl. Math. 13, 4927–4941 (2017)
4. Yohannes, K.Y., Shankar, B.: Heat and mass transfer in MHD flow of nanofluids through a porous media due to a stretching sheet with viscous dissipation and chemical reaction effects. Carib. J. Sci. Tech. 1, 1–17 (2013)
5. Ibrahim, W.: Magnetohydrodynamic (MHD) boundary layer stagnation point flow and heat transfer of a nanofluid past a stretching sheet with melting. Prop. Power Res. 6(3), 214–222 (2017) https://doi.org/10.1016/j.jppr.2017.07.002