Author:
Xu Jingyuan,Smaling Hanneke J. A.,Schoones Jan W.,Achterberg Wilco P.,van der Steen Jenny T.
Abstract
Abstract
Background
Discomfort and distressing symptoms are common at the end of life, while people in this stage are often no longer able to express themselves. Technologies may aid clinicians in detecting and treating these symptoms to improve end-of-life care. This review provides an overview of noninvasive monitoring technologies that may be applied to persons with limited communication at the end of life to identify discomfort.
Methods
A systematic search was performed in nine databases, and experts were consulted. Manuscripts were included if they were written in English, Dutch, German, French, Japanese or Chinese, if the monitoring technology measured discomfort or distressing symptoms, was noninvasive, could be continuously administered for 4 hours and was potentially applicable for bed-ridden people. The screening was performed by two researchers independently. Information about the technology, its clinimetrics (validity, reliability, sensitivity, specificity, responsiveness), acceptability, and feasibility were extracted.
Results
Of the 3,414 identified manuscripts, 229 met the eligibility criteria. A variety of monitoring technologies were identified, including actigraphy, brain activity monitoring, electrocardiography, electrodermal activity monitoring, surface electromyography, incontinence sensors, multimodal systems, and noncontact monitoring systems. The main indicators of discomfort monitored by these technologies were sleep, level of consciousness, risk of pressure ulcers, urinary incontinence, agitation, and pain. For the end-of-life phase, brain activity monitors could be helpful and acceptable to monitor the level of consciousness during palliative sedation. However, no manuscripts have reported on the clinimetrics, feasibility, and acceptability of the other technologies for the end-of-life phase.
Conclusions
Noninvasive monitoring technologies are available to measure common symptoms at the end of life. Future research should evaluate the quality of evidence provided by existing studies and investigate the feasibility, acceptability, and usefulness of these technologies in the end-of-life setting. Guidelines for studies on healthcare technologies should be better implemented and further developed.
Funder
European Research Council
Publisher
Springer Science and Business Media LLC