Mechanical stress in Arabidopsis leaves orients microtubules in a 'continuous’ supracellular pattern

Author:

Jacques Eveline,Verbelen Jean-Pierre,Vissenberg Kris

Abstract

Abstract Background Cortical microtubules form a dynamic network and continuously undergo shrinking (catastrophe), pausing and rebuilding (rescue). The advantage of such a dynamic system is that it may mediate appropriate responses in a short time span. Microtubules are known to play a pivotal role in determining the orientation of the cellulose microfibril deposition in the plant cell wall. The latter is a solid exoskeleton surrounding the protoplast. It forms the physical framework that interconnects most cells and has to bear the tensile stresses within the tissue. Here we describe the effect of externally applied pressure on microtubule organization in growing Arabidopsis leaves. Results Confocal microscopy examination of transgenic plants bearing GFP-tagged TUA6 proteins led to the observation that application of an additional mechanical pressure on growing Arabidopsis leaves triggers an excessive bundling of microtubules within the individual cell. Besides, the microtubules seem to align in neighboring cells, creating a 'continuous’ supracellular pattern. This effect occurs within 3 hours after applied external force and is age-dependent, whereby only cells of leaves up to 19 days after sowing (DAS) are susceptible to the applied pressure. Conclusions Upon externally applied pressure on developing Arabidopsis leaves, microtubules bundle and rearrange to form seemingly continuous supracellular patterns. As microtubules guide the cellulose synthase complexes, this observed reorganisation pattern probably affects the cellulose deposition, contributing to the reinforcement of the cell wall in a particular position to cope with the extra-applied pressure. The age-effect is reasonable, since younger cells, which are actively shaping their cell walls, are more vulnerable to altered mechanical stresses while in leaves older than 19 DAS, the walls are more robust and therefore can sustain the applied forces.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3