Abstract
AbstractFor the clinical diagnosis of diseases and for basic biological research, it is crucial to develop a trustworthy and efficient method for detecting small extracellular vesicles (sEVs) in multiple experimental conditions. Here, we create a colorimetric assay that enables sensitive and precise sEVs identification without the need for pricey equipment. In this assay, the exonuclease III (Exo III)-assisted signal recycle is activated by the released single-strand DNA (ssDNA) from SMBs (streptavidin magnetic beads)-aptamer-ssDNA complex after identification of sEVs. By integrating with the strand displacement amplification (SDA) process, a significant amount of double-strand DNA products with G-rich tails is produced. The G-rich tails fold to G-quadruplex under the assistance of hemin to catalyze the oxidation of TMB, yielding a color change. The approach offers a broad detection range of 5 orders of magnitudes based on the signal recycles and SDA. In addition, single-stranded DNA binding protein (SSB) is exploited in this method to minimize the background signal from non-specific digestion of Exo-III, making the method a robust tool for sEVs detection and disease diagnosis.
Funder
the Natural Science Foundation of Chongqing Science and Technology Commission
the Natural Science Foundation of Chongqing Medical and Pharmaceutical College
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献