Glyphosate detection via a nanomaterial-enhanced electrochemical molecularly imprinted polymer sensor

Author:

Aghoutane Youssra,Burhan Hakan,Sen FatihORCID,Bouchikhi Benachir,El Bari Nezha

Abstract

AbstractGlyphosate (GLY) is a widely used herbicide with an important role in agriculture. It effectively controls weeds, enhancing agricultural yield and product quality. However, its use raises significant concerns such as potential risks to non-target ecosystems and human health. In response to these concerns, we develop an electrochemical sensor with a molecularly imprinted polymer (MIP) and gold nanoparticles for GLY detection. The sensor includes a screen-printed carbon electrode (SPCE) functionalized with gold nanoparticles and a self-assembled polyvinyl carboxylic acid chloride (PVC-COOH) layer. GLY compounds interact with carboxylic groups and are encapsulated by a polymer of methacrylic acid (MAA) cross-linked with ethylene glycol dimethacrylate (EGDMA). Electrochemical performance was assessed using differential pulse voltammetry (DPV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Morphological characterization was performed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM). The sensor exhibits impressive selectivity, detecting GLY within a range of 273–1200 pg/mL with minimal interference from other pesticides. It boasts a low detection limit of 0.8 pg/mL (signal-to-noise ratio S/N = 3) by DPV and 0.001 pg/mL by EIS. The sensor’s versatility extends to various sample types, including surface water, agricultural wastewater, soil, and cucumber, demonstrating high recovery rates (> 96.05%) and low relative standard deviation (RSD) (< 5.7%). The developed MIP sensor is proven to be a valuable tool for rapid and highly sensitive detection of GLY in diverse environmental and agri-food samples.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3