Multi-view graph-based interview representation to improve depression level estimation

Author:

Agarwal Navneet,Dias Gaël,Dollfus Sonia

Abstract

AbstractDepression is a serious mental illness that affects millions worldwide and consequently has attracted considerable research interest in recent years. Within the field of automated depression estimation, most researchers focus on neural network architectures while ignoring other research directions. Within this paper, we explore an alternate approach and study the impact of input representations on the learning ability of the models. In particular, we work with graph-based representations to highlight different aspects of input transcripts, both at the interview and corpus levels. We use sentence similarity graphs and keyword correlation graphs to exemplify the advantages of graphical representations over sequential models for binary classification problems within depression estimation. Additionally, we design multi-view architectures that split interview transcripts into question and answer views in order to take into account dialogue structure. Our experiments show the benefits of multi-view based graphical input encodings over sequential models and provide new state-of-the-art results for binary classification on the gold standard DAIC-WOZ dataset. Further analysis establishes our method as a means for generating meaningful insights and visual summaries of interview transcripts that can be used by medical professionals.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3