Attribute Selection Hybrid Network Model for risk factors analysis of postpartum depression using Social media

Author:

Gopalakrishnan Abinaya,Gururajan Raj,Venkataraman Revathi,Zhou Xujuan,Ching Ka Chan,Saravanan Arul,Sen Maitrayee

Abstract

Abstract Background and objective Postpartum Depression (PPD) is a frequently ignored birth-related consequence. Social network analysis can be used to address this issue because social media network serves as a platform for their users to communicate with their friends and share their opinions, photos, and videos, which reflect their moods, feelings, and sentiments. In this work, the depression of delivered mothers is identified using the PPD score and segregated into control and depressed groups. Recently, to detect depression, deep learning methods have played a vital role. However, these methods still do not clarify why some people have been identified as depressed. Methods We have developed Attribute Selection Hybrid Network (ASHN) to detect the postpartum depression diagnoses framework. Later analysis of the post of mothers who have been confirmed with the score calculated by the experts of the field using physiological questionnaire score. The model works on the analysis of the attributes of the negative Facebook posts for Depressed user Diagnosis, which is a large general forum. This framework explains the process of analyzing posts containing Sentiment, depressive symptoms, and reflective thinking and suggests psycho-linguistic and stylistic attributes of depression in posts. Results The experimental results show that ASHN works well and is easy to understand. Here, four attribute networks based on psychological studies were used to analyze the different parts of posts by depressed users. The results of the experiments show the extraction of psycho-linguistic markers-based attributes, the recording of assessment metrics including Precision, Recall and F1 score and visualization of those attributes were used title-wise as well as words wise and compared with daily life, depression and postpartum depressed people using Word cloud. Furthermore, a comparison to a reference with Baseline and ASHN model was carried out. Conclusions Attribute Selection Hybrid Network (ASHN) mimics the importance of attributes in social media posts to predict depressed mothers. Those mothers were anticipated to be depressed by answering a questionnaire designed by domain experts with prior knowledge of depression. This work will help researchers look at social media posts to find useful evidence for other depressive symptoms.

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3