Author:
Choi Yoon Kyoung,Feng Linqing,Jeong Won-Ki,Kim Jinhyun
Abstract
AbstractMapping neural connections within the brain has been a fundamental goal in neuroscience to understand better its functions and changes that follow aging and diseases. Developments in imaging technology, such as microscopy and labeling tools, have allowed researchers to visualize this connectivity through high-resolution brain-wide imaging. With this, image processing and analysis have become more crucial. However, despite the wealth of neural images generated, access to an integrated image processing and analysis pipeline to process these data is challenging due to scattered information on available tools and methods. To map the neural connections, registration to atlases and feature extraction through segmentation and signal detection are necessary. In this review, our goal is to provide an updated overview of recent advances in these image-processing methods, with a particular focus on fluorescent images of the mouse brain. Our goal is to outline a pathway toward an integrated image-processing pipeline tailored for connecto-informatics. An integrated workflow of these image processing will facilitate researchers’ approach to mapping brain connectivity to better understand complex brain networks and their underlying brain functions. By highlighting the image-processing tools available for fluroscent imaging of the mouse brain, this review will contribute to a deeper grasp of connecto-informatics, paving the way for better comprehension of brain connectivity and its implications.
Funder
Korea Institute of Science and Technology (KIST) Intramural Program
K-brain Project of the National Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献