Using social interaction models for genetic analysis of skin damage in gilts

Author:

Leite Natália GaloroORCID,Knol Egbert,Tsuruta Shogo,Nuphaus Stefanie,Vogelzang Roos,Lourenco Daniela

Abstract

Abstract Background Skin damage is a trait of economic and welfare importance that results from social interactions between animals. These interactions may produce wound signs on the gilt’s skin as a result of damage behavior (i.e., fighting), biting syndromes (i.e., tail, vulva, or ear biting), and swine inflammation and necrosis syndrome. Although current selection for traits that are affected by social interactions primarily focuses on improving direct genetic effects, combined selection on direct and social genetic effects could increase genetic gain and avoid a negative response to selection in cases of competitive behavior. The objectives of this study were to (1) estimate variance components for combined skin damage (CSD), with or without accounting for social genetic effects, (2) investigate the impact of including genomic information on the prediction accuracy, bias, and dispersion of CSD estimated breeding values, and (3) perform a single-step genome-wide association study (ssGWAS) of CSD under a classical and a social interaction model. Results Our results show that CSD is heritable and affected by social genetic effects. Modeling CSD with social interaction models increased the total heritable variance relative to the phenotypic variance by three-fold compared to the classical model. Including genomic information increased the prediction accuracy of direct, social, and total estimated breeding values for purebred sires by at least 21.2%. Bias and dispersion of estimated breeding values were reduced by including genomic information in classical and social interaction models but remained present. The ssGWAS did not identify any single nucleotide polymorphism that was significantly associated with social or direct genetic effects for CSD. Conclusions Combined skin damage is heritable, and genetic selection against this trait will increase the welfare of animals in the long term. Combined skin damage is affected by social genetic effects, and modeling this trait with a social interaction model increases the potential for genetic improvement. Including genomic information increases the prediction accuracy of estimated breeding values and reduces their bias and dispersion, although some biases persist. The results of the genome-wide association study indicate that CSD has a polygenic architecture and no major quantitative trait locus was detected.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3