Abstract
Abstract
Background
In all organisms, life-history traits are constrained by trade-offs, which may represent physiological limitations or be related to energy resource management. To detect trade-offs within a population, one promising approach is the use of artificial selection, because intensive selection on one trait can induce unplanned changes in others. In chickens, the breeding industry has achieved remarkable genetic progress in production and feed efficiency over the last 60 years. However, this may have been accomplished at the expense of other important biological functions, such as immunity. In the present study, we used three experimental lines of layer chicken—two that have been divergently selected for feed efficiency and one that has been selected for increased antibody response to inactivated Newcastle disease virus (ND3)—to explore the impact of improved feed efficiency on animals’ immunocompetence and, vice versa, the impact of improved antibody response on animals’ growth and feed efficiency.
Results
There were detectable differences between the low (R+) and high (R−) feed-efficiency lines with respect to vaccine-specific antibody responses and counts of monocytes, heterophils, and/or T cell population. The ND3 line presented reduced body weight and feed intake compared to the control line. ND3 chickens also demonstrated an improved antibody response against a set of commercial viral vaccines, but lower blood leucocyte counts.
Conclusions
This study demonstrates the value of using experimental chicken lines that are divergently selected for RFI or for a high antibody production, to investigate the modulation of immune parameters in relation to growth and feed efficiency. Our results provide further evidence that long-term selection for the improvement of one trait may have consequences on other important biological functions. Hence, strategies to ensure optimal trade-offs among competing functions will ultimately be required in multi-trait selection programs in livestock.
Funder
Institut Carnot Santé Animale
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics
Reference96 articles.
1. Rauw WM, editor. Resource allocation theory applied to farm animal production. Wallingford: CABI; 2008.
2. Agrawal AA, Conner JK, Rasmann S. Tradeoffs and negative correlations in evolutionary ecology. In: Bell MA, Eanes WF, Futuyma DJ, Levinton JS, editors. Evolution since Darwin: the first 150 years. Sunderland: Sinauer Associates; 2010. p. 243–68.
3. Huot B, Yao J, Montgomery BL, He SY. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant. 2014;7:1267–87.
4. Stearns SC. Trade-offs in life-history evolution. Funct Ecol. 1989;3:259–68.
5. van Noordwijk AJ, de Jong G. Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat. 1986;128:137–42.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献