Bone regeneration property of tooth-derived bone substitute prepared chairside for periodontal bone defects: an experimental study

Author:

Zhang Rui,Ruangsawasdi Nisarat,Pumpaluk Piyapanna,Yuan Quan,Peng Yi,Seriwatanachai Dutmanee

Abstract

Abstract Background Periodontitis often leads to progressive destruction and loss of alveolar bone, the reconstruction of which remains difficult in periodontal therapy. As a novel bone graft material, tooth-derived bone substitute (TDBS) processed from extracted teeth has been previously reported about its osteoconductivity and promising results in bone regeneration. This study was to investigate the biological effects and bone regeneration properties of TDBS in vitro and in vivo using rat periodontal bone defect model. Methods Three groups of materials were used in the experiments: TDBS, TDBS treated with ethylene diamine tetraacetic acid (EDTA) (TDBS-E), and allogeneic bone materials. Calcium (Ca) and phosphate (P) ion dissolutions were quantified by spectrophotometer for seven days. The releases of bone morphogenetic protein-2 (BMP-2) and transforming growth factor-β1 (TGF-β1) were identified by enzyme-linked immunosorbent assay (ELISA). Human osteoblast proliferation, migration, and differentiation were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell counting, alkaline phosphatase activity (ALP), and alizarin red staining (ARS), respectively. Furthermore, the osteogenic effects of TDBS on periodontal furcation bone defects were evaluated at eight weeks postoperatively using micro-computed tomography (Micro-CT) and histological analysis. Results The dissolution of both Ca and P ions in TDBS increased over time. The BMP-2 released from TDBS was significantly higher than that from TDBS-E and allografts, while the TGF-β1 release from TDBS and TDBS-E groups was higher than that in the allografts. The TDBS-E group could induce the highest level of osteoblast proliferation compared to other groups. Cell migration with allografts co-culture was significantly induced compared to the blank control. However, all groups demonstrated similar positive effects on osteoblast differentiation. Furthermore, in the periodontal model, all materials could effectively enhance bone regeneration in the furcation defect. Conclusions The TDBS prepared chairside as an autogenous bone graft, demonstrating osteoinductivity, which enhances the osteogenic biological characteristics. Therefore, TDBS is suggested as an economical and biocompatible material for periodontal bone regeneration.

Funder

International Dental Collaboration of the Mekong River Region (IDCMR) Scholarship

Scientific Research Fund of Clinical Medical Research Center of Oral Diseases in Yunnan Province

Fundamental Fund: the fiscal year 2023 by National Science Research and Innovation Fund

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3