Automatic craniomaxillofacial landmarks detection in CT images of individuals with dentomaxillofacial deformities by a two-stage deep learning model

Author:

Tao Leran,Li Meng,Zhang Xu,Cheng Mengjia,Yang Yang,Fu Yijiao,Zhang Rongbin,Qian Dahong,Yu Hongbo

Abstract

Abstract Background Accurate cephalometric analysis plays a vital role in the diagnosis and subsequent surgical planning in orthognathic and orthodontics treatment. However, manual digitization of anatomical landmarks in computed tomography (CT) is subject to limitations such as low accuracy, poor repeatability and excessive time consumption. Furthermore, the detection of landmarks has more difficulties on individuals with dentomaxillofacial deformities than normal individuals. Therefore, this study aims to develop a deep learning model to automatically detect landmarks in CT images of patients with dentomaxillofacial deformities. Methods Craniomaxillofacial (CMF) CT data of 80 patients with dentomaxillofacial deformities were collected for model development. 77 anatomical landmarks digitized by experienced CMF surgeons in each CT image were set as the ground truth. 3D UX-Net, the cutting-edge medical image segmentation network, was adopted as the backbone of model architecture. Moreover, a new region division pattern for CMF structures was designed as a training strategy to optimize the utilization of computational resources and image resolution. To evaluate the performance of this model, several experiments were conducted to make comparison between the model and manual digitization approach. Results The training set and the validation set included 58 and 22 samples respectively. The developed model can accurately detect 77 landmarks on bone, soft tissue and teeth with a mean error of 1.81 ± 0.89 mm. Removal of region division before training significantly increased the error of prediction (2.34 ± 1.01 mm). In terms of manual digitization, the inter-observer and intra-observer variations were 1.27 ± 0.70 mm and 1.01 ± 0.74 mm respectively. In all divided regions except Teeth Region (TR), our model demonstrated equivalent performance to experienced CMF surgeons in landmarks detection (p  >  0.05). Conclusions The developed model demonstrated excellent performance in detecting craniomaxillofacial landmarks when considering manual digitization work of expertise as benchmark. It is also verified that the region division pattern designed in this study remarkably improved the detection accuracy.

Funder

National Natural Science Foundation of China

Multi-center clinical research project of Shanghai Jiao Tong University School of Medicine

Shanghai Natural Science Foundation

Shanghai Jiao Tong University School of Medicine Student Innovation Training Program

Shanghai Jiao Tong University Trans-med Awards Research

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3