A predictive nomogram: a cross-sectional study on a simple-to-use model for screening 12-year-old children for severe caries in middle schools

Author:

Duan Shaoying,Li Meng,Zhao Jialiang,Yang Huiyu,He Jinfeng,Lei Lei,Cheng Ran,Hu Tao

Abstract

Abstract Background A nomogram is a tool that transforms complex regression equations into simple and visual graphs and enables clinicians and patients to conveniently compute output probabilities without needing medical knowledge and complex formulas. The aim of this study was to develop and validate a predictive nomogram to screen for severe caries among 12-year-old children based on risk factors in Sichuan Province, China. Methods A cross-sectional study of 4573 12-year-olds was conducted up to May 2016 in middle schools from three districts and three counties in Sichuan Province, China. All the children underwent oral examinations and completed questionnaires to assess general information, oral impacts on daily performance, dietary habits, subjective health conditions, history of dental trauma, frequency of toothache, dental visits, and knowledge, attitudes, and behaviours toward oral hygiene. Univariate analysis and multivariate logistic regression analysis were used to determine which variables were significantly associated with severe caries (operationalized as DMFT ≥ 3). A nomogram was developed and validated by using the ‘rms’ package and two cross-validation methods. Results Severe caries was found in 537 of the 4573 children (11.74%). Multivariate logistic regression analysis revealed that the following variables predicted a higher risk of severe caries: ‘female’ [odds ratio (OR) = 1.985, 95% confidence interval (95% CI): 1.63–2.411], ‘urban’ (OR = 2.389, 95% CI: 1.96–2.91), ‘non-only child’ (OR = 1.317, 95% CI: 1.07–1.625), ‘very poor self-assessment of oral health status’ (OR = 2.157, 95% CI: 1.34–3.467) and ‘visited a dentist less than 6 months’ (OR = 1.861, 95% CI: 1.38–2.505). Multivariate logistic regression analysis also indicated that the following variables predicted a lower risk of severe caries: ‘middle level of urbanization’ (OR = 0.395, 95% CI: 0.32–0.495) and ‘high level of urbanization’ (OR = 0.466, 95% CI: 0.37–0.596). Both the fivefold and leave-one-out cross-validation methods indicated that the nomogram model built by these 6 variables displayed good disease recognition ability. Conclusions The nomogram was a simple-to-use model to screen children for severe caries. This model was found to facilitate non-dental professionals in assessing risk values without oral examinations and making referrals to dental professionals.

Funder

Key Research and Development Program of China of Sichuan Province

Chinese Institute of stomatology in 2015 public welfare industry research project

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3