Abstract
Abstract
Background
The understanding of high mortality associated with intra-abdominal candidiasis (IAC) remains limited. While Candida is considered a harmless colonizer in the digestive tract, its role as a true pathogen in IAC is still debated. Evidence regarding Candida virulence in the human peritoneal fluid are lacking. We hypothesized that during IAC, Candida albicans develops virulence factors to survive to new environmental conditions. The objective of this observational exploratory monocentric study is to investigate the influence of peritoneal fluid (PF) on the expression of C. albicans virulence using a multimodal approach.
Materials and methods
A standardized inoculum of a C. albicans (3.106 UFC/mL) reference strain (SC5314) was introduced in vitro into various PF samples obtained from critically ill patients with intra-abdominal infection. Ascitic fluids (AFs) and Sabouraud medium (SBD) were used as control groups. Optical microscopy and conventional culture techniques were employed to assess the morphological changes and growth of C. albicans. Reverse transcriptase qPCR was utilized to quantify the expression levels of five virulence genes. The metabolic production of C. albicans was measured using the calScreener™ technology.
Results
A total of 26 PF samples from patients with secondary peritonitis were included in the study. Critically ill patients were mostly male (73%) with a median age of 58 years admitted for urgent surgery (78%). Peritonitis was mostly hospital-acquired (81%), including 13 post-operative peritonitis (50%). The infected PF samples predominantly exhibited polymicrobial composition. The findings revealed substantial variability in C. albicans growth and morphological changes in the PF compared to ascitic fluid. Virulence gene expression and metabolic production were dependent on the specific PF sample and the presence of bacterial coinfection.
Conclusions
This study provides evidence of C. albicans virulence expression in the peritoneal fluid. The observed variability in virulence expression suggests that it is influenced by the composition of PF and the presence of bacterial coinfection. These findings contribute to a better understanding of the complex dynamics of intra-abdominal candidiasis and advocate for personalized approach for IAC patients.
Trial registrationhttps://clinicaltrials.gov/ (NCT05264571; February 22, 2022)
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Critical Care and Intensive Care Medicine