Identifying the reactive sites of hydrogen peroxide decomposition and hydroxyl radical formation on chrysotile asbestos surfaces

Author:

Walter Martin,Schenkeveld Walter D. C.,Geroldinger Gerald,Gille Lars,Reissner Michael,Kraemer Stephan M.

Abstract

Abstract Background Fibrous chrysotile has been the most commonly applied asbestos mineral in a range of technical applications. However, it is toxic and carcinogenic upon inhalation. The chemical reactivity of chrysotile fiber surfaces contributes to its adverse health effects by catalyzing the formation of highly reactive hydroxyl radicals (HO) from H2O2. In this Haber-Weiss cycle, Fe on the fiber surface acts as a catalyst: Fe3+ decomposes H2O2 to reductants that reduce surface Fe3+ to Fe2+, which is back-oxidized by H2O2 (Fenton-oxidation) to yield HO. Chrysotile contains three structural Fe species: ferrous and ferric octahedral Fe and ferric tetrahedral Fe (Fe3+tet). Also, external Fe may adsorb or precipitate onto fiber surfaces. The goal of this study was to identify the Fe species on chrysotile surfaces that catalyze H2O2 decomposition and HO generation. Results We demonstrate that at the physiological pH 7.4 Fe3+tet on chrysotile surfaces substantially contributes to H2O2 decomposition and is the key structural Fe species catalyzing HO generation. After depleting Fe from fiber surfaces, a remnant fiber-related H2O2 decomposition mode was identified, which may involve magnetite impurities, remnant Fe or substituted redox-active transition metals other than Fe. Fe (hydr)oxide precipitates on chrysotile surfaces also contributed to H2O2 decomposition, but were per mole Fe substantially less efficient than surface Fe3+tet. Fe added to chrysotile fibers increased HO generation only when it became incorporated and tetrahedrally coordinated into vacancy sites in the Si layer. Conclusions Our results suggest that at the physiological pH 7.4, oxidative stress caused by chrysotile fibers largely results from radicals produced in the Haber-Weiss cycle that is catalyzed by Fe3+tet. The catalytic role of Fe3+tet in radical generation may also apply to other pathogenic silicates in which Fe3+tet is substituted, e.g. quartz, amphiboles and zeolites. However, even if these pathogenic minerals do not contain Fe, our results suggest that the mere presence of vacancy sites may pose a risk, as incorporation of external Fe into a tetrahedral coordination environment can lead to HO generation.

Funder

Universitat Wien

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3