The unique probe selector: a comprehensive web service for probe design and oligonucleotide arrays

Author:

Chen Shu-Hwa,Lo Chen-Zen,Tsai Ming-Chi,Hsiung Chao A,Lin Chung-Yen

Abstract

Abstract Background Nucleic acid hybridization, a fundamental technique in molecular biology, can be modified into very effective and sensitive methods for detecting particular targets mixed with millions of non-target sequences. Therefore, avoiding cross-hybridization is the most crucial issue for developing diagnostic methods based on hybridization. Results To develop a probe with a high discriminating power, this study constructed a web service, the Unique Probe Selector (UPS), for customized probe design. The UPS service integrates a probe design mechanism and a scoring system for evaluating the performance of probe annealing and the uniqueness of a probe in a user-defined genetic background. Starting from an intuitive web interface, the UPS accepts a query with single or multiple sequences in fasta format. The best probe(s) for each sequence can be downloaded from result pages in a fasta or .csv format with a summary of probe characteristics. The option " Unique probe within group " selects the most unique probe for each target sequence with low probability to hybridize to the other sequences in the same submitted query. The option " Unique probe in the specific organism " devises probes for each submitted sequence to identify its target among selected genetic backgrounds based on Unigene. Conclusion The UPS evaluates probe-to-target hybridization under a user-defined condition in silico to ensure high-performance hybridization and minimizes the possibility of non-specific reactions. UPS has been applied to design human arrays for gene expression studies and to develop several small arrays of gene families that were inferred as molecular signatures of cancer typing/staging or pathogen signatures. Notably, UPS is freely accessible at http://array.iis.sinica.edu.tw/ups/.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3