Various criteria in the evaluation of biomedical named entity recognition

Author:

Tsai Richard Tzong-Han,Wu Shih-Hung,Chou Wen-Chi,Lin Yu-Chun,He Ding,Hsiang Jieh,Sung Ting-Yi,Hsu Wen-Lian

Abstract

Abstract Background Text mining in the biomedical domain is receiving increasing attention. A key component of this process is named entity recognition (NER). Generally speaking, two annotated corpora, GENIA and GENETAG, are most frequently used for training and testing biomedical named entity recognition (Bio-NER) systems. JNLPBA and BioCreAtIvE are two major Bio-NER tasks using these corpora. Both tasks take different approaches to corpus annotation and use different matching criteria to evaluate system performance. This paper details these differences and describes alternative criteria. We then examine the impact of different criteria and annotation schemes on system performance by retesting systems participated in the above two tasks. Results To analyze the difference between JNLPBA's and BioCreAtIvE's evaluation, we conduct Experiment 1 to evaluate the top four JNLPBA systems using BioCreAtIvE's classification scheme. We then compare them with the top four BioCreAtIvE systems. Among them, three systems participated in both tasks, and each has an F-score lower on JNLPBA than on BioCreAtIvE. In Experiment 2, we apply hypothesis testing and correlation coefficient to find alternatives to BioCreAtIvE's evaluation scheme. It shows that right-match and left-match criteria have no significant difference with BioCreAtIvE. In Experiment 3, we propose a customized relaxed-match criterion that uses right match and merges JNLPBA's five NE classes into two, which achieves an F-score of 81.5%. In Experiment 4, we evaluate a range of five matching criteria from loose to strict on the top JNLPBA system and examine the percentage of false negatives. Our experiment gives the relative change in precision, recall and F-score as matching criteria are relaxed. Conclusion In many applications, biomedical NEs could have several acceptable tags, which might just differ in their left or right boundaries. However, most corpora annotate only one of them. In our experiment, we found that right match and left match can be appropriate alternatives to JNLPBA and BioCreAtIvE's matching criteria. In addition, our relaxed-match criterion demonstrates that users can define their own relaxed criteria that correspond more realistically to their application requirements.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference28 articles.

1. Rosario B, Hearst M: Classifying Semantic Relations in Bioscience Text. 2004.

2. Tamames J: Text Detective: BioAlma's gene annotation tool. 2004.

3. Ciaramita M, Gangemi A, Ratsch E, Saric J, Rojas I: Unsupervised Learning of Semantic Relations between Concepts of a Molecular Biology Ontology. 2005.

4. Chiang JH, Yu HC: MeKE: Discovering the Functions of Gene Products from Biomedical Literature via Sentence Alignment. Bioinformatics 2003, 19(11):1417–1422. 10.1093/bioinformatics/btg160

5. Bioinformatics;JD Kim,2003

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3