Author:
Arakaki Adrian K,Huang Ying,Skolnick Jeffrey
Abstract
Abstract
Background
We previously developed EFICAz, an enzyme function inference approach that combines predictions from non-completely overlapping component methods. Two of the four components in the original EFICAz are based on the detection of functionally discriminating residues (FDRs). FDRs distinguish between member of an enzyme family that are homofunctional (classified under the EC number of interest) or heterofunctional (annotated with another EC number or lacking enzymatic activity). Each of the two FDR-based components is associated to one of two specific kinds of enzyme families. EFICAz exhibits high precision performance, except when the maximal test to training sequence identity (MTTSI) is lower than 30%. To improve EFICAz's performance in this regime, we: i) increased the number of predictive components and ii) took advantage of consensual information from the different components to make the final EC number assignment.
Results
We have developed two new EFICAz components, analogs to the two FDR-based components, where the discrimination between homo and heterofunctional members is based on the evaluation, via Support Vector Machine models, of all the aligned positions between the query sequence and the multiple sequence alignments associated to the enzyme families. Benchmark results indicate that: i) the new SVM-based components outperform their FDR-based counterparts, and ii) both SVM-based and FDR-based components generate unique predictions. We developed classification tree models to optimally combine the results from the six EFICAz components into a final EC number prediction. The new implementation of our approach, EFICAz2, exhibits a highly improved prediction precision at MTTSI < 30% compared to the original EFICAz, with only a slight decrease in prediction recall. A comparative analysis of enzyme function annotation of the human proteome by EFICAz2 and KEGG shows that: i) when both sources make EC number assignments for the same protein sequence, the assignments tend to be consistent and ii) EFICAz2 generates considerably more unique assignments than KEGG.
Conclusion
Performance benchmarks and the comparison with KEGG demonstrate that EFICAz2 is a powerful and precise tool for enzyme function annotation, with multiple applications in genome analysis and metabolic pathway reconstruction. The EFICAz2 web service is available at: http://cssb.biology.gatech.edu/skolnick/webservice/EFICAz2/index.html
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference42 articles.
1. Arakaki AK, Tian W, Skolnick J: High precision multi-genome scale reannotation of enzyme function by EFICAz. BMC Genomics 2006, 7: 315. 10.1186/1471-2164-7-315
2. Freilich S, Spriggs RV, George RA, Al-Lazikani B, Swindells M, Thornton JM: The complement of enzymatic sets in different species. J Mol Biol 2005, 349(4):745–763. 10.1016/j.jmb.2005.04.027
3. Webb EC: Enzyme nomenclature 1992: recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes. San Diego: Published for the International Union of Biochemistry and Molecular Biology by Academic Press; 1992.
4. Glasner ME, Gerlt JA, Babbitt PC: Evolution of enzyme superfamilies. Curr Opin Chem Biol 2006, 10(5):492–497. 10.1016/j.cbpa.2006.08.012
5. Ginsburg H: Caveat emptor: limitations of the automated reconstruction of metabolic pathways in Plasmodium. Trends Parasitol 2008, 25(1):37–43. 10.1016/j.pt.2008.08.012
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献