Systematic analysis of human kinase genes: a large number of genes and alternative splicing events result in functional and structural diversity
-
Published:2005-12
Issue:S4
Volume:6
Page:
-
ISSN:1471-2105
-
Container-title:BMC Bioinformatics
-
language:en
-
Short-container-title:BMC Bioinformatics
Author:
Milanesi Luciano,Petrillo Mauro,Sepe Leandra,Boccia Angelo,D'Agostino Nunzio,Passamano Myriam,Di Nardo Salvatore,Tasco Gianluca,Casadio Rita,Paolella Giovanni
Abstract
Abstract
Background
Protein kinases are a well defined family of proteins, characterized by the presence of a common kinase catalytic domain and playing a significant role in many important cellular processes, such as proliferation, maintenance of cell shape, apoptosys. In many members of the family, additional non-kinase domains contribute further specialization, resulting in subcellular localization, protein binding and regulation of activity, among others. About 500 genes encode members of the kinase family in the human genome, and although many of them represent well known genes, a larger number of genes code for proteins of more recent identification, or for unknown proteins identified as kinase only after computational studies.
Results
A systematic in silico study performed on the human genome, led to the identification of 5 genes, on chromosome 1, 11, 13, 15 and 16 respectively, and 1 pseudogene on chromosome X; some of these genes are reported as kinases from NCBI but are absent in other databases, such as KinBase. Comparative analysis of 483 gene regions and subsequent computational analysis, aimed at identifying unannotated exons, indicates that a large number of kinase may code for alternately spliced forms or be incorrectly annotated. An InterProScan automated analysis was perfomed to study domain distribution and combination in the various families. At the same time, other structural features were also added to the annotation process, including the putative presence of transmembrane alpha helices, and the cystein propensity to participate into a disulfide bridge.
Conclusion
The predicted human kinome was extended by identifiying both additional genes and potential splice variants, resulting in a varied panorama where functionality may be searched at the gene and protein level. Structural analysis of kinase proteins domains as defined in multiple sources together with transmembrane alpha helices and signal peptide prediction provides hints to function assignment. The results of the human kinome analysis are collected in the KinWeb database, available for browsing and searching over the internet, where all results from the comparative analysis and the gene structure annotation are made available, alongside the domain information. Kinases may be searched by domain combinations and the relative genes may be viewed in a graphic browser at various level of magnification up to gene organization on the full chromosome set.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference18 articles.
1. Cohen P: The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem 2001, 268(19):5001–5010. 10.1046/j.0014-2956.2001.02473.x 2. Hanks SK: Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biol 2003, 4(5):111. 10.1186/gb-2003-4-5-111 3. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O'Donovan C, Redaschi N, Yeh LS: The Universal Protein Resource (UniProt). Nucleic Acids Res 33(Database):D154–9. 2005 Jan 1 10.1093/nar/gki070 4. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bradley P, Bork P, Bucher P, Cerutti L, Copley R, Courcelle E, Das U, Durbin R, Fleischmann W, Gough J, Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lonsdale D, Lopez R, Letunic I, Madera M, Maslen J, McDowall J, Mitchell A, Nikolskaya AN, Orchard S, Pagni M, Ponting CP, Quevillon E, Selengut J, Sigrist CJ, Silventoinen V, Studholme DJ, Vaughan R, Wu CH: InterPro, progress and status in 2005. Nucleic Acids Res 2005, 33(Database):D201–5. 10.1093/nar/gki106 5. Hubbard T, Andrews D, Caccamo M, Cameron G, Chen Y, Clamp M, Clarke L, Coates G, Cox T, Cunningham F, Curwen V, Cutts T, Down T, Durbin R, Fernandez-Suarez XM, Gilbert J, Hammond M, Herrero J, Hotz H, Howe K, Iyer V, Jekosch K, Kahari A, Kasprzyk A, Keefe D, Keenan S, Kokocinsci F, London D, Longden I, McVicker G, Melsopp C, Meidl P, Potter S, Proctor G, Rae M, Rios D, Schuster M, Searle S, Severin J, Slater G, Smedley D, Smith J, Spooner W, Stabenau A, Stalker J, Storey R, Trevanion S, Ureta-Vidal A, Vogel J, White S, Woodwark C, Birney E: Ensembl 2005. Nucleic Acids Res 33(Database):D447–53. 2005 Jan 1 10.1093/nar/gki138
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|