PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory

Author:

Xue Yu,Li Ao,Wang Lirong,Feng Huanqing,Yao Xuebiao

Abstract

Abstract Background As a reversible and dynamic post-translational modification (PTM) of proteins, phosphorylation plays essential regulatory roles in a broad spectrum of the biological processes. Although many studies have been contributed on the molecular mechanism of phosphorylation dynamics, the intrinsic feature of substrates specificity is still elusive and remains to be delineated. Results In this work, we present a novel, versatile and comprehensive program, PPSP (Prediction of PK-specific Phosphorylation site), deployed with approach of Bayesian decision theory (BDT). PPSP could predict the potential phosphorylation sites accurately for ~70 PK (Protein Kinase) groups. Compared with four existing tools Scansite, NetPhosK, KinasePhos and GPS, PPSP is more accurate and powerful than these tools. Moreover, PPSP also provides the prediction for many novel PKs, say, TRK, mTOR, SyK and MET/RON, etc. The accuracy of these novel PKs are also satisfying. Conclusion Taken together, we propose that PPSP could be a potentially powerful tool for the experimentalists who are focusing on phosphorylation substrates with their PK-specific sites identification. Moreover, the BDT strategy could also be a ubiquitous approach for PTMs, such as sumoylation and ubiquitination, etc.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3