Protein function prediction by massive integration of evolutionary analyses and multiple data sources

Author:

Cozzetto Domenico,Buchan Daniel WA,Bryson Kevin,Jones David T

Abstract

Abstract Background Accurate protein function annotation is a severe bottleneck when utilizing the deluge of high-throughput, next generation sequencing data. Keeping database annotations up-to-date has become a major scientific challenge that requires the development of reliable automatic predictors of protein function. The CAFA experiment provided a unique opportunity to undertake comprehensive 'blind testing' of many diverse approaches for automated function prediction. We report on the methodology we used for this challenge and on the lessons we learnt. Methods Our method integrates into a single framework a wide variety of biological information sources, encompassing sequence, gene expression and protein-protein interaction data, as well as annotations in UniProt entries. The methodology transfers functional categories based on the results from complementary homology-based and feature-based analyses. We generated the final molecular function and biological process assignments by combining the initial predictions in a probabilistic manner, which takes into account the Gene Ontology hierarchical structure. Results We propose a novel scoring function called COmbined Graph-Information Content similarity (COGIC) score for the comparison of predicted functional categories and benchmark data. We demonstrate that our integrative approach provides increased scope and accuracy over both the component methods and the naïve predictors. In line with previous studies, we find that molecular function predictions are more accurate than biological process assignments. Conclusions Overall, the results indicate that there is considerable room for improvement in the field. It still remains for the community to invest a great deal of effort to make automated function prediction a useful and routine component in the toolbox of life scientists. As already witnessed in other areas, community-wide blind testing experiments will be pivotal in establishing standards for the evaluation of prediction accuracy, in fostering advancements and new ideas, and ultimately in recording progress.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3