Integrated multi-level quality control for proteomic profiling studies using mass spectrometry

Author:

Cairns David A,Perkins David N,Stanley Anthea J,Thompson Douglas,Barrett Jennifer H,Selby Peter J,Banks Rosamonde E

Abstract

Abstract Background Proteomic profiling using mass spectrometry (MS) is one of the most promising methods for the analysis of complex biological samples such as urine, serum and tissue for biomarker discovery. Such experiments are often conducted using MALDI-TOF (matrix-assisted laser desorption/ionisation time-of-flight) and SELDI-TOF (surface-enhanced laser desorption/ionisation time-of-flight) MS. Using such profiling methods it is possible to identify changes in protein expression that differentiate disease states and individual proteins or patterns that may be useful as potential biomarkers. However, the incorporation of quality control (QC) processes that allow the identification of low quality spectra reliably and hence allow the removal of such data before further analysis is often overlooked. In this paper we describe rigorous methods for the assessment of quality of spectral data. These procedures are presented in a user-friendly, web-based program. The data obtained post-QC is then examined using variance components analysis to quantify the amount of variance due to some of the factors in the experimental design. Results Using data from a SELDI profiling study of serum from patients with different levels of renal function, we show how the algorithms described in this paper may be used to detect systematic variability within and between sample replicates, pooled samples and SELDI chips and spots. Manual inspection of those spectral data that were identified as being of poor quality confirmed the efficacy of the algorithms. Variance components analysis demonstrated the relatively small amount of technical variance attributable to day of profile generation and experimental array. Conclusion Using the techniques described in this paper it is possible to reliably detect poor quality data within proteomic profiling experiments undertaken by MS. The removal of these spectra at the initial stages of the analysis substantially improves the confidence of putative biomarker identification and allows inter-experimental comparisons to be carried out with greater confidence.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference58 articles.

1. Munro NP, Cairns DA, Clarke P, Rogers M, Stanley AJ, Barrett JH, Harnden P, Thompson D, Eardley I, Banks RE, Knowles MA: Urinary biomarker profiling in transitional cell carcinoma. International Journal of Cancer 2006, 119(11):2642–2650. 10.1002/ijc.22238

2. Ricolleau G, Charbonnel C, Lode L, Loussouarn D, Joalland MP, Bogumil R, Jourdain S, Minvielle S, Campone M, Deporte-Fety R, Campion L, Jezequel P: Surface-enhanced laser desorption/ionization time of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in node-negative breast cancer tumors. Proteomics 2006, 6(6):1963–1975. 10.1002/pmic.200500283

3. Taguchi F, Solomon B, Gregorc V, Roder H, Gray R, Kasahara K, Nishio M, Brahmer J, Spreafico A, Ludovini V, Massion PP, Dziadziuszko R, Schiller J, Grigorieva J, Tsypin M, Hunsucker SW, Caprioli R, Duncan MW, Hirsch FR, Bunn PA, Carbone DP: Mass spectrometry to classify non-small-cell lung cancer patients for clinical outcome after treatment with epidermal growth factor receptor tyrosine kinase inhibitors: A multicohort cross-institutional study. Journal of the National Cancer Institute 2007, 99(11):838–846. 10.1093/jnci/djk195

4. Yanagisawa K, Shyr Y, Xu BJ, Massion PP, Larsen PH, White BC, Roberts JR, Edgerton M, Gonzalez A, Nadaf S, Moore JH, Caprioli RM, Carbone DP: Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 2003, 362(9382):433–439. 10.1016/S0140-6736(03)14068-8

5. Diamandis EP: Serum proteomic profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for cancer diagnosis: next steps. Cancer Res 2006, 66(11):5540–5541. 10.1158/0008-5472.CAN-05-4503

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3