Understanding and use of food labeling systems among Whites and Latinos in the United States and among Mexicans: Results from the International Food Policy Study, 2017

Author:

Nieto ClaudiaORCID,Jáuregui AlejandraORCID,Contreras-Manzano Alejandra,Arillo-Santillan Edna,Barquera SimónORCID,White Christine M.ORCID,Hammond DavidORCID,Thrasher James F.

Abstract

Abstract Background Obesity and chronic diseases could be prevented through improved diet. Most governments require at least one type of food labeling system on packaged foods to communicate nutrition information and promote healthy eating. This study evaluated adult consumer understanding and use of nutrition labeling systems in the US and Mexico, the most obese countries in the world. Methods Adults from online consumer panels in the US (Whites n = 2959; Latinos n = 667) and in Mexico (n = 3533) were shown five food labeling systems: 1. Nutrition Facts Table (NFT) that shows nutrients of concern per serving; 2. Guideline Daily Amounts (GDA) that shows levels of nutrients of concern; 3. Multiple Traffic-Light (MTL) that color codes each GDA nutrient (green = healthy; yellow = moderately unhealthy; red = unhealthy); 4. Health Star Rating System (HSR) that rates foods on a single dimension of healthiness; 5. Warning Label (WL) with a stop sign for nutrients present in unhealthy levels. Participants rated each label on understanding (“easy”/“very easy to understand” vs “difficult”/“very difficult to understand”), and, for NFTs and GDAs, frequency of use (“sometimes”/“often” vs “never”). Mixed logistic models regressed understanding and frequency of use on indicators of labeling systems (NFT = ref), testing for interactions by ethnicity (US Latinos, US Whites, Mexicans), while controlling for sociodemographic and obesity-related factors. Results Compared to the NFT, participants reported greater understanding of the WL (OR = 4.8; 95% CI = 4.4–5.3) and lower understanding of the HSR (OR = 0.34, 95% CI = 0.31–0.37) and the MTL (OR = 0.56, 95% CI = 0.52–0.61), with similar patterns across ethnic subgroups. Participants used GDAs less often than NFTs (OR = 0.48; 95%CI = 0.41–0.55), with the greatest difference among US Whites (OR = 0.10; 95%CI = 0.07–0.14). Conclusions Understanding and use of the GDA was similar to that of the NFT. Whites, Latinos, and Mexicans consistently reported the best understanding for WLs, a FOPL that highlights unhealthfulness of a product. Therefore, a FOPL summary indicator, such as WLs, may be more effective in both the US and Mexico for guiding consumers towards informed food choices.

Funder

Canadian Institutes of Health Research

Publisher

Springer Science and Business Media LLC

Subject

Nutrition and Dietetics,Physical Therapy, Sports Therapy and Rehabilitation,Medicine (miscellaneous)

Reference65 articles.

1. Popkin BM. Is the obesity epidemic a national security issue around the globe? Curr Opin Endocrinol Diabetes Obes. 2011;18:328–31.

2. Elder JP. Mexico and the USA: the world’s leaders in the obesity epidemic. Salud Publica Mex. 2013;55.

3. Shamah T, Cuevas L, Gaona E. Encuesta Nacional de Salud y Nutrición de Medio Camino 2016: Informe final de resultados; 2016.

4. National Center for Health Statistics. Health United States report 2016. Cent Dis Control. 2017; Available from: https://www.cdc.gov/nchs/data/hus/hus16.pdf#056%0Ahttps://www.cdc.gov/nchs/data/hus/hus16.pdf%23056%0Ahttps://www.cdc.gov/nchs/data/hus/hus16.pdf%23listtables%0Ahttps://www.cdc.gov/nchs/data/hus/hus16.pdf%23019 .

5. Centers for Disease Control and Prevention. National Center for Chronic Disease Prevention and Health Promotion. National Diabetes Statistics Report, 2017: Estimates of Diabetes and Its Burden in the United States. Available from: www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3