Abstract
Abstract
Background
Automated segmentation of anatomical structures is a crucial step in image analysis. For lung segmentation in computed tomography, a variety of approaches exists, involving sophisticated pipelines trained and validated on different datasets. However, the clinical applicability of these approaches across diseases remains limited.
Methods
We compared four generic deep learning approaches trained on various datasets and two readily available lung segmentation algorithms. We performed evaluation on routine imaging data with more than six different disease patterns and three published data sets.
Results
Using different deep learning approaches, mean Dice similarity coefficients (DSCs) on test datasets varied not over 0.02. When trained on a diverse routine dataset (n = 36), a standard approach (U-net) yields a higher DSC (0.97 ± 0.05) compared to training on public datasets such as the Lung Tissue Research Consortium (0.94 ± 0.13, p = 0.024) or Anatomy 3 (0.92 ± 0.15, p = 0.001). Trained on routine data (n = 231) covering multiple diseases, U-net compared to reference methods yields a DSC of 0.98 ± 0.03 versus 0.94 ± 0.12 (p = 0.024).
Conclusions
The accuracy and reliability of lung segmentation algorithms on demanding cases primarily relies on the diversity of the training data, highlighting the importance of data diversity compared to model choice. Efforts in developing new datasets and providing trained models to the public are critical. By releasing the trained model under General Public License 3.0, we aim to foster research on lung diseases by providing a readily available tool for segmentation of pathological lungs.
Funder
Siemens Healthineers
Novartis
IBM Center for the Business of Government
Nvidia
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging
Reference41 articles.
1. OECD (2017) Health at a Glance 2017: OECD indicators. https://doi.org/10.1787/19991312
2. Mansoor A, Bagci U, Foster B et al (2015) Segmentation and image analysis of abnormal lungs at CT: current approaches, challenges, and future trends. Radiographics 35:1056–1076. https://doi.org/10.1148/rg.2015140232
3. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK (2018) Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med 15:e1002683. https://doi.org/10.1371/journal.pmed.1002683
4. Göksel O, Jiménez-del Toro OA, Foncubierta-Rodríguez A, Muller H (2015) Overview of the VISCERAL Challenge at ISBI. In: Proceedings of the VISCERAL Challenge at ISBI 2015. New York, NY
5. Yang J, Veeraraghavan H, Armato SG 3rd et al (2018) Autosegmentation for thoracic radiation treatment planning: a grand challenge at AAPM 2017. Med Phys 45:4568–4581. https://doi.org/10.1002/mp.13141
Cited by
317 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献