Performance of a 3D convolutional neural network in the detection of hypoperfusion at CT pulmonary angiography in patients with chronic pulmonary embolism: a feasibility study

Author:

Vainio TuomasORCID,Mäkelä Teemu,Savolainen Sauli,Kangasniemi Marko

Abstract

Abstract Background Chronic pulmonary embolism (CPE) is a life-threatening disease easily misdiagnosed on computed tomography. We investigated a three-dimensional convolutional neural network (CNN) algorithm for detecting hypoperfusion in CPE from computed tomography pulmonary angiography (CTPA). Methods Preoperative CTPA of 25 patients with CPE and 25 without pulmonary embolism were selected. We applied a 48%–12%–40% training-validation-testing split (12 positive and 12 negative CTPA volumes for training, 3 positives and 3 negatives for validation, 10 positives and 10 negatives for testing). The median number of axial images per CTPA was 335 (min–max, 111–570). Expert manual segmentations were used as training and testing targets. The CNN output was compared to a method in which a Hounsfield unit (HU) threshold was used to detect hypoperfusion. Receiver operating characteristic area under the curve (AUC) and Matthew correlation coefficient (MCC) were calculated with their 95% confidence interval (CI). Results The predicted segmentations of CNN showed AUC 0.87 (95% CI 0.82–0.91), those of HU-threshold method 0.79 (95% CI 0.74–0.84). The optimal global threshold values were CNN output probability ≥ 0.37 and ≤ -850 HU. Using these values, MCC was 0.46 (95% CI 0.29–0.59) for CNN and 0.35 (95% CI 0.18–0.48) for HU-threshold method (average difference in MCC in the bootstrap samples 0.11 (95% CI 0.05–0.16). A high CNN prediction probability was a strong predictor of CPE. Conclusions We proposed a deep learning method for detecting hypoperfusion in CPE from CTPA. This model may help evaluating disease extent and supporting treatment planning.

Funder

Helsingin ja Uudenmaan Sairaanhoitopiiri

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3