Accelerated IVIM-corrected DTI in acute hamstring injury: towards a clinically feasible acquisition time

Author:

Rauh Susanne S.ORCID,Suskens Jozef J. M.,Monte Jithsa R.,Smithuis Frank,Gurney-Champion Oliver J.,Tol Johannes L.,Maas Mario,Nederveen Aart J.,Strijkers Gustav J.,Hooijmans Melissa T.

Abstract

Abstract Background Intravoxel incoherent motion (IVIM)-corrected diffusion tensor imaging (DTI) potentially enhances return-to-play (RTP) prediction after hamstring injuries. However, the long scan times hamper clinical implementation. We assessed accelerated IVIM-corrected DTI approaches in acute hamstring injuries and explore the sensitivity of the perfusion fraction (f) to acute muscle damage. Methods Athletes with acute hamstring injury received DTI scans of both thighs < 7 days after injury and at RTP. For a subset, DTI scans were repeated with multiband (MB) acceleration. Data from standard and MB-accelerated scans were fitted with standard and accelerated IVIM-corrected DTI approach using high b-values only. Segmentations of the injury and contralateral healthy muscles were contoured. The fitting methods as well as the standard and MB-accelerated scan were compared using linear regression analysis. For sensitivity to injury, Δ(injured minus healthy) DTI parameters between the methods and the differences between injured and healthy muscles were compared (Wilcoxon signed-rank test). Results The baseline dataset consisted of 109 athletes (16 with MB acceleration); 64 of them received an RTP scan (8 with MB acceleration). Linear regression of the standard and high-b DTI fitting showed excellent agreement. With both fitting methods, standard and MB-accelerated scans were comparable. Δ(injured minus healthy) was similar between standard and accelerated methods. For all methods, all IVIM-DTI parameters except f were significantly different between injured and healthy muscles. Conclusions High-b DTI fitting with MB acceleration reduced the scan time from 11:08 to 3:40 min:s while maintaining sensitivity to hamstring injuries; f was not different between healthy and injured muscles. Relevance statement The accelerated IVIM-corrected DTI protocol, using fewer b-values and MB acceleration, reduced the scan time to under 4 min without affecting the sensitivity of the quantitative outcome parameters to hamstring injuries. This allows for routine clinical monitoring of hamstring injuries, which could directly benefit injury treatment and monitoring. Key points • Combining high-b DTI-fitting and multiband-acceleration dramatically reduced by two thirds the scan time. • The accelerated IVIM-corrected DTI approaches maintained the sensitivity to hamstring injuries. • The IVIM-derived perfusion fraction was not sensitive to hamstring injuries. Graphical Abstract

Funder

Dutch Technology Foundation

ZonMw

KWF Kankerbestrijding

National Basketball Association (NBA) & General Electric HealthCare (GEHC) Sports Medicine Collaboration, USA

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3