Tracked Foley catheter for motion compensation during fusion image-guided prostate procedures: a phantom study

Author:

Hale Graham R.,Pesapane FilippoORCID,Xu Sheng,Bakhutashvili Ivane,Glossop Neil,Turkbey Baris,Pinto Peter A.,Wood Bradford J.

Abstract

Abstract Background Uncorrected patient or prostate motion may impair targeting prostate areas during fusion image-guided procedures. We evaluated if a prototype “tracked Foley catheter” (TFC) could maintain fusion image alignment after simulated organ motion. Methods A pelvic phantom model underwent magnetic resonance imaging (MRI), and the prostate was segmented. The TFC was placed in the phantom. MRI/ultrasound (US) fusion was performed. Four trials were performed varying motion and TFC presence/absence: (1) TFC/no-motion, (2) TFC/motion, (3) no-TFC/no-motion, and (4) no-TFC/motion. To quantify image alignment, screen captures generated Dice similarity coefficient (DSC) and offset distances (ODs) (maximal US-to-MRI distance between edges on fusion images). Three anatomical targets were identified for placement of a needle under fusion guidance. A computed tomography scan was used to measure system error (SE), i.e., the distance from needle tip to intended target. Results The TFC presence improved MRI/US alignment by DSC 0.88, 0.88, 0.74, and 0.61 in trials 1, 2, 3, and 4, respectively. Both OD (trial 2 versus trial 4, 4.85 ± 1.60 versus 25.29 ± 6.50 mm, p < 0.001) and SE (trial 2 versus trial 4, 6.35 ± 1.31 versus 32.16 ± 6.50 mm, p < 0.005) were significantly lower when the TFC was present after artificial motion, and significantly smaller OD when static (trial 1 versus trial 3, 4.29 ± 1.24 versus 6.42 ± 2.29 mm, p < 0.001). Conclusion TFC provided better image alignment with or without simulated motion. This may overcome system limitations, allowing for more accurate fusion image alignment during fusion-guided biopsy, ablation, or robotic prostatectomy.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Reference36 articles.

1. American Cancer Society. Key statistics for prostate cancer. Available via https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html. Published 2018. Updated January 4, 2018

2. [NG131] Ng. Prostate cancer: diagnosis and management. Available via https://www.nice.org.uk/guidance/ng131/chapter/Recommendations#assessment-and-diagnosis. Published 2019

3. European Association of Urology. Prostate Cancer. Available via https://uroweb.org/guideline/prostate-cancer/. Published 2019

4. Turkbey B, Brown AM, Sankineni S, Wood BJ, Pinto PA, Choyke PL (2016) Multiparametric prostate magnetic resonance imaging in the evaluation of prostate cancer. CA Cancer J Clin 66:326–336. https://doi.org/10.3322/caac.21333

5. George AK, Pinto PA, Rais-Bahrami S (2014) Multiparametric MRI in the PSA screening era. Biomed Res Int 2014:465816. https://doi.org/10.1155/2014/465816

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3