Breast cancer Ki-67 expression prediction by digital breast tomosynthesis radiomics features
Author:
Funder
Ministero della Salute
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging
Link
http://link.springer.com/content/pdf/10.1186/s41747-019-0117-2.pdf
Reference10 articles.
1. de Azambuja E, Cardoso F, de Castro G Jr et al (2007) Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer 96:1504–1513 https://doi.org/10.1038/sj.bjc.6603756
2. Ignatiadis M, Azim HA Jr, Desmedt C et al (2016) The genomic grade assay compared with Ki-67 to determine risk of distant breast cancer recurrence. JAMA Oncol 2:217–224 https://doi.org/10.1001/jamaoncol.2015.4377
3. Rimm DL, Leung SCY, McShane LM et al (2019) An international multicenter study to evaluate reproducibility of automated scoring for assessment of Ki-67 in breast cancer. Mod Pathol 32:59–69 https://doi.org/10.1038/s41379-018-0109-4
4. Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS (2018) Rapid review: radiomics and breast cancer. Breast Cancer Res Treat 169:217–229 https://doi.org/10.1007/s10549-018-4675-4
5. Crivelli P, Ledda RE, Parascandolo N, Fara A, Soro D, Conti M (2018) A new challenge for radiologists: radiomics in breast cancer. Biomed Res Int 2018:1–10 https://doi.org/10.1155/2018/6120703
Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Radiomics Analysis of Intratumoral and Various Peritumoral Regions From Automated Breast Volume Scanning for Accurate Ki-67 Prediction in Breast Cancer Using Machine Learning;Academic Radiology;2024-09
2. Predicting Ki-67 expression levels in breast cancer using radiomics-based approaches on digital breast tomosynthesis and ultrasound;Frontiers in Oncology;2024-07-11
3. A deep learning-based radiomics model for predicting lymph node status from lung adenocarcinoma;BMC Medical Imaging;2024-05-24
4. Deep learning model to predict Ki-67 expression of breast cancer using digital breast tomosynthesis;Breast Cancer;2024-03-07
5. Radiomics signatures for predicting the Ki-67 level and HER-2 status based on bone metastasis from primary breast cancer;Frontiers in Cell and Developmental Biology;2024-01-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3