Colorectal cancer subtype identification from differential gene expression levels using minimalist deep learning

Author:

Li Shaochuan,Yang Yuning,Wang Xin,Li Jun,Yu Jun,Li Xiangtao,Wong Ka-Chun

Abstract

Abstract Background Cancer molecular subtyping plays a critical role in individualized patient treatment. In previous studies, high-throughput gene expression signature-based methods have been proposed to identify cancer subtypes. Unfortunately, the existing ones suffer from the curse of dimensionality, data sparsity, and computational deficiency. Methods To address those problems, we propose a computational framework for colorectal cancer subtyping without any exploitation in model complexity and generality. A supervised learning framework based on deep learning (DeepCSD) is proposed to identify cancer subtypes. Specifically, based on the differentially expressed genes under cancer consensus molecular subtyping, we design a minimalist feed-forward neural network to capture the distinct molecular features in different cancer subtypes. To mitigate the overfitting phenomenon of deep learning as much as possible, L1 and L2 regularization and dropout layers are added. Results For demonstrating the effectiveness of DeepCSD, we compared it with other methods including Random Forest (RF), Deep forest (gcForest), support vector machine (SVM), XGBoost, and DeepCC on eight independent colorectal cancer datasets. The results reflect that DeepCSD can achieve superior performance over other algorithms. In addition, gene ontology enrichment and pathology analysis are conducted to reveal novel insights into the cancer subtype identification and characterization mechanisms. Conclusions DeepCSD considers all subtype-specific genes as input, which is pathologically necessary for its completeness. At the same time, DeepCSD shows remarkable robustness in handling cross-platform gene expression data, achieving similar performance on both training and test data without significant model overfitting or exploitation of model complexity.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3