Taxonomy-based data representation for data mining: an example of the magnitude of risk associated with H. pylori infection

Author:

Polaka IneseORCID,Razuka-Ebela Danute,Park Jin Young,Leja Marcis

Abstract

Abstract Background The amount of available and potentially significant data describing study subjects is ever growing with the introduction and integration of different registries and data banks. The single specific attribute of these data are not always necessary; more often, membership to a specific group (e.g. diet, social ‘bubble’, living area) is enough to build a successful machine learning or data mining model without overfitting it. Therefore, in this article we propose an approach to building taxonomies using clustering to replace detailed data from large heterogenous data sets from different sources, while improving interpretability. We used the GISTAR study data base that holds exhaustive self-assessment questionnaire data to demonstrate this approach in the task of differentiating between H. pylori positive and negative study participants, and assessing their potential risk factors. We have compared the results of taxonomy-based classification to the results of classification using raw data. Results Evaluation of our approach was carried out using 6 classification algorithms that induce rule-based or tree-based classifiers. The taxonomy-based classification results show no significant loss in information, with similar and up to 2.5% better classification accuracy. Information held by 10 and more attributes can be replaced by one attribute demonstrating membership to a cluster in a hierarchy at a specific cut. The clusters created this way can be easily interpreted by researchers (doctors, epidemiologists) and describe the co-occurring features in the group, which is significant for the specific task. Conclusions While there are always features and measurements that must be used in data analysis as they are, the use of taxonomies for the description of study subjects in parallel allows using membership to specific naturally occurring groups and their impact on an outcome. This can decrease the risk of overfitting (picking attributes and values specific to the training set without explaining the underlying conditions), improve the accuracy of the models, and improve privacy protection of study participants by decreasing the amount of specific information used to identify the individual.

Funder

European Regional Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3