Endoscopy-based IBD identification by a quantized deep learning pipeline

Author:

Datres Massimiliano,Paolazzi Elisa,Chierici Marco,Pozzi Matteo,Colangelo Antonio,Dorian Donzella Marcello,Jurman Giuseppe

Abstract

Abstract Background Discrimination between patients affected by inflammatory bowel diseases and healthy controls on the basis of endoscopic imaging is an challenging problem for machine learning models. Such task is used here as the testbed for a novel deep learning classification pipeline, powered by a set of solutions enhancing characterising elements such as reproducibility, interpretability, reduced computational workload, bias-free modeling and careful image preprocessing. Results First, an automatic preprocessing procedure is devised, aimed to remove artifacts from clinical data, feeding then the resulting images to an aggregated per-patient model to mimic the clinicians decision process. The predictions are based on multiple snapshots obtained through resampling, reducing the risk of misleading outcomes by removing the low confidence predictions. Each patient’s outcome is explained by returning the images the prediction is based upon, supporting clinicians in verifying diagnoses without the need for evaluating the full set of endoscopic images. As a major theoretical contribution, quantization is employed to reduce the complexity and the computational cost of the model, allowing its deployment on small power devices with an almost negligible 3% performance degradation. Such quantization procedure holds relevance not only in the context of per-patient models but also for assessing its feasibility in providing real-time support to clinicians even in low-resources environments. The pipeline is demonstrated on a private dataset of endoscopic images of 758 IBD patients and 601 healthy controls, achieving Matthews Correlation Coefficient 0.9 as top performance on test set. Conclusion We highlighted how a comprehensive pre-processing pipeline plays a crucial role in identifying and removing artifacts from data, solving one of the principal challenges encountered when working with clinical data. Furthermore, we constructively showed how it is possible to emulate clinicians decision process and how it offers significant advantages, particularly in terms of explainability and trust within the healthcare context. Last but not least, we proved that quantization can be a useful tool to reduce the time and resources consumption with an acceptable degradation of the model performs. The quantization study proposed in this work points up the potential development of real-time quantized algorithms as valuable tools to support clinicians during endoscopy procedures.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3