Characterization and pathogenicity of Beauveria bassiana strains isolated from Galleria mellonella L. (Lepidoptera: Pyralidae) in Turkey

Author:

Gençer Dönüş,Bayramoğlu ZeynepORCID

Abstract

Abstract Background The greater wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae), is among the most important wax pests economically. In the larval stage, the pest feeds on honeycomb wax and seriously damages the combs that were left unattended by the bees. Recently, the interest in ecologically safer alternatives to chemical insecticides has increased due to the significant success achieved with entomopathogenic microorganisms in the control of several lepidopteran pest larvae with minimum or no harm to the bees, natural rivals, animals, and humans. The current study was conducted to investigate the pathogenicity of two entomopathogenic fungus isolates (Beauveria bassiana G-A and G-B) isolated from dead G. mellonella larvae and their efficacy in pest control under laboratory conditions. Results Morphological and molecular identification revealed that the two isolates corresponded to B. bassiana species G-A and G-B strains. The response to the inoculation with the two fungal strains was conducted on G. mellonella larvae at 1 × 105–9 conidia/ml concentrations. The concentrations led to 96.54 and 89.66% mortality in G-A and G-B B. bassiana isolates at the highest concentration on day 10, respectively. LC50 was calculated between 0.2 × 106 (0.03 – 1.6) and 0.6 × 106 (0.07 – 6.1) conidia/ml. Conclusion The present study findings demonstrated that these isolates had the potential for G. mellonella control and B. bassiana isolates were a safe alternative to chemical control and could be recommended for use to protect stored wax products.

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Plant Science,Agronomy and Crop Science,Ecology

Reference33 articles.

1. Abou-Shaara HF (2020) Effects of the fungus, Beauveria bassiana, on the larval development of the greater wax moth, Galleria mellonella, (Lepidoptera: Pyralidae) under laboratory conditions. J Apic 35(1):81–84

2. Adly D, Marzouk WM (2019) Efficacy of the larval parasitoid Bracon hebetor Say (Hymenoptera: Braconidae) on the greater wax moth larvae Galleria mellonella (L.) (Lepidoptera: Pyralidae) under laboratory and field conditions. Egypt J Biol Pest Control 29:87

3. Ahmed AA, Abd-Elhady HK (2013) Efficacy of two fungus-based biopesticide against the honeybee ectoparasitic mite, Varroa destructor. Pak J Biol Sci 16:819–825

4. Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW (2012) GenBank. Nucleic Acids Res 40:48–53

5. Biswas D, Narayanan K, Chakraborty M (2003) Survey for natural enemies of Galleria mellonella and cross infectivity of its nucleopolyhedrovirus. Entomon 28:179–183

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3