Abstract
Abstract
Key message
The resistance of Pinus pinaster Aiton to pinewood nematode Bursaphelenchus xylophilus (Steiner and Buhrer) varied among populations from the Iberian Peninsula, with survival rates for inoculated seedlings ranging from 5 to 100%. These differences in resistance were paralleled by differences in some constitutive chemical defenses. Populations from the southeastern Iberian Peninsula displayed higher resistance than northern populations.
Context
The presence of the pinewood nematode (PWN), Bursaphelenchus xylophilus (Steiner and Buhrer), in Portugal threatens Mediterranean pine species such as Pinus pinaster Aiton.
Aims
We have focused on assessing the resistance of P. pinaster populations to B. xylophilus, looking for any relationship between the PWN resistance and some constitutive chemical defenses and geoclimatic parameters.
Methods
Two-year-old seedlings from 32 provenances and two seed orchards were evaluated in an experiment of artificial inoculation following a randomized complete block design under greenhouse conditions. We measured growth-related traits, response to B. xylophilus inoculations, and constitutive chemical compounds in needles of the evaluated seedlings and compiled geoclimatic data for each population. Mixed models, nonparametric tests, correlations, and PCA were used to analyze the data.
Results
Survival, wilting symptoms, morphological traits, and nematode density varied significantly among populations. Lower concentrations of constitutive polyphenols, lipid-soluble substances, and tannins were related to higher PWN resistance. Populations from the southeast of the Iberian Peninsula showed higher survival rates than those from further north. Additionally, we observed that populations to warm, dry climates showed higher resistance to B. xylophilus than populations originating from humid, temperate climates.
Conclusion
Higher susceptibility to PWN is related to lower growth traits, to lower levels of certain constitutive chemical compounds, and to adaptations to harsher climate.
Publisher
Springer Science and Business Media LLC
Reference75 articles.
1. Alía R, Moro J, Denis JB (1997) Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction. Can J For Res 27:1548–1559. https://doi.org/10.1139/cjfr-27-10-1548
2. Alía R, Garcia del Barrio JM, Iglesias S et al (2009) Regiones de procedencia de especies forestales de España. OA Parques Nacionales, Madrid
3. Alonso Santos M, Ignacio Quinteiro MF, Rozados Lorenzo MJ, et al (2013) Analogías y diferencias en el nivel de diversos parámetros químicos en tejidos de P. taeda (resistente a Bursaphelenchus xylophilus) y otros pinos (P. pinaster, P. radiata, P. sylvestris, P. halepensis y P. pinea), que pudieran ser susceptibles al nematodo en Galicia. 6° Congr For Español 1–9. ISBN: 978-84-937964-9-5
4. Alonso Santos M, Menéndez-Gutiérrez M, Díaz Vazquez R (2021) Constitutive chemical compounds in different tissues of seven pine species and their relationship with susceptibility to pine wood nematode (Bursaphelenchus xylophilus). Environ Sci Proc 68. https://doi.org/10.3390/iecf2020-07767
5. Archambeau J, Garz MB, Vega MDM, Brachi B (2021) Extreme climatic events but not environmental heterogeneity shape within-population genetic variation in maritime pine. bioRxiv 1–24. https://doi.org/10.1101/2021.08.17.456636
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献