Adaptive middleware in go - a software architecture-based approach

Author:

Rosa NelsonORCID,Cavalcanti David,Campos Gláucia,Silva André

Abstract

AbstractAdaptive middleware is essential for developing distributed systems in several applications domains. The design and implementation of this kind of middleware, however, it is still a challenge due to general adaptation issues, such as When to adapt? Where to include the adaptation code? What to adapt?, and How to guarantee safe adaptations?. Current solutions commonly face these challenges at the implementation level and do not focus on the safety aspects of the adaptation. This paper proposes a holistic solution implemented in Go programming language for developing adaptive middleware centred on the adoption of software architecture principles combined with lightweight use of formalisms. Software architecture concepts work as an enabling approach for structuring and adapting the middleware. Meanwhile, the formalisation helps in providing some guarantees before and during the middleware execution. The proposed solution is evaluated by implementing an adaptive middleware and comparing its performance against existing middleware systems. As shown in the experimental evaluation, the proposed solution enables us to design and implement safe adaptive middleware systems without compromising their performance.

Publisher

Sociedade Brasileira de Computacao - SB

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Customizable and adaptable middleware of things;International Journal of Communication Systems;2024-06-27

2. Middleware Supporting PIS: Requirements, Solutions, and Challenges;The Evolution of Pervasive Information Systems;2022-09-20

3. A Communication Method of Distributed Tactical Training Simulation System Suitable for Remote Interconnection;Wuhan University Journal of Natural Sciences;2021-12

4. Adaptive Middleware of Things;2021 IEEE Symposium on Computers and Communications (ISCC);2021-09-05

5. Towards a Plug-In Architecture to Enable Self-Adaptation through Middleware;2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C);2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3