A new concept for the production of 11C-labelled radiotracers

Author:

Wenz JanORCID,Arndt Felix,Samnick Samuel

Abstract

Abstract Background The GMP-compliant production of radiopharmaceuticals has been performed using disposable units (cassettes) with a dedicated synthesis module. To expand this “plug ‘n’ synthesize” principle to a broader scope of modules we developed a pressure controlled setup that offers an alternative to the usual stepper motor controlled rotary valves. The new concept was successfully applied to the synthesis of N-methyl-[11C]choline, L-S-methyl-[11C]methionine and [11C]acetate. Results The target gas purification of cyclotron produced [11C]CO2 and subsequent conversion to [11C]MeI was carried out on a TRACERlab Fx C Pro module. The labelling reactions were controlled with a TRACERlab Fx FE module. With the presented modular principle we were able to produce N-methyl-[11C]choline and L-S-methyl-[11C]methionine by loading a reaction loop with neat N,N'-dimethylaminoethanol (DMAE) or an ethanol/water mixture of NaOH and L-homocysteine (L-HC), respectively and a subsequent reaction with [11C]MeI. After 18 min N-methyl-[11C]choline was isolated with 52% decay corrected yield and a radiochemical purity of > 99%. For L-S-methyl-[11C]methionine the total reaction time was 19 min reaction, yielding 25% of pure product (> 97%). The reactor design was used as an exemplary model for the technically challenging [11C]acetate synthesis. The disposable unit was filled with 1 mL MeMgCl (0.75 M) in tetrahydrofuran (THF) bevore [11C]CO2 was passed through. After complete release of [11C]CO2 the reaction mixture was quenched with water and guided through a series of ion exchangers (H+, Ag+ and OH). The product was retained on a strong anion exchanger, washed with water and finally extracted with saline. The product mixture was acidified and degassed to separate excess [11C]CO2 before dispensing. Under these conditions the total reaction time was 18 ± 2 min and pure [11C]acetate (n = 10) was isolated with a decay corrected yield of 51 ± 5%. Conclusion Herein, we described a novel single use unit for the synthesis of carbon-11 labelled tracers for preclinical and clinical applications of N-methyl-[11C]choline, L-S-methyl-[11C]methionine and [11C]acetate.

Funder

Universitätsklinikum Würzburg

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology,Radiology, Nuclear Medicine and imaging,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Metabolic Reprogramming to Cancer Imaging and Diagnosis;International Journal of Molecular Sciences;2022-12-13

2. A robust [11C]acetate synthesis on a TRACERLab FX C pro module;Applied Radiation and Isotopes;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3