Whole genome sequencing of phage resistant Bacillus anthracismutants reveals an essential role for cell surface anchoring protein CsaB in phage AP50c adsorption

Author:

Bishop-Lilly Kimberly A,Plaut Roger D,Chen Peter E,Akmal Arya,Willner Kristin M,Butani Amy,Dorsey Shakia,Mokashi Vishwesh,Mateczun Alfred J,Chapman Carol,George Matroner,Luu Truong,Read Timothy D,Calendar Richard,Stibitz Scott,Sozhamannan Shanmuga

Abstract

Abstract Background Spontaneous Bacillus anthracis mutants resistant to infection by phage AP50c (AP50R) exhibit a mucoid colony phenotype and secrete an extracellular matrix. Methods Here we utilized a Roche/454-based whole genome sequencing approach to identify mutations that are candidates for conferring AP50c phage resistance, followed by genetic deletion and complementation studies to validate the whole genome sequence data and demonstrate that the implicated gene is necessary for AP50c phage infection. Results Using whole genome sequence data, we mapped the relevant mutations in six AP50R strains to csaB. Eleven additional spontaneous mutants, isolated in two different genetic backgrounds, were screened by PCR followed by Sanger sequencing of the csaB gene. In each spontaneous mutant, we found either a non-synonymous substitution, a nonsense mutation, or a frame-shift mutation caused by single nucleotide polymorphisms or a 5 base pair insertion in csaB. All together, 5 and 12 of the 17 spontaneous mutations are predicted to yield altered full length and truncated CsaB proteins respectively. As expected from these results, a targeted deletion or frame-shift mutations introduced into csaB in a different genetic background, in a strain not exposed to AP50c, resulted in a phage resistant phenotype. Also, substitution of a highly conserved histidine residue with an alanine residue (H270A) in CsaB resulted in phage resistance, suggesting that a functional CsaB is necessary for phage sensitivity. Conversely, introduction of the wild type allele of csaB in cis into the csaB deletion mutant by homologous recombination or supplying the wild type CsaB protein in trans from a plasmid restored phage sensitivity. The csaB mutants accumulated cell wall material and appeared to have a defective S-layer, whereas these phenotypes were reverted in the complemented strains. Conclusions Taken together, these data suggest an essential role for csaB in AP50c phage infection, most likely in phage adsorption. (The whole genome sequences generated from this study have been submitted to GenBank under SRA project ID: SRA023659.1 and sample IDs: AP50 R1: SRS113675.1, AP50 R2: SRS113676.1, AP50 R3: SRS113728.1, AP50 R4: SRS113733.1, AP50 R6: SRS113734.1, JB220 Parent: SRS150209.1, JB220 Mutant: SRS150211.1).

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Reference39 articles.

1. Labrie SJ, Samson JE, Moineau S: Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010, 8 (5): 317-327. 10.1038/nrmicro2315.

2. Stern A, Sorek R: The phage-host arms race: Shaping the evolution of microbes. Bioessays. 2011, 33 (1): 43-51. 10.1002/bies.201000071.

3. Hagens S, Loessner MJ: Application of bacteriophages for detection and control of foodborne pathogens. Appl Microbiol Biotechnol. 2007, 76 (3): 513-519. 10.1007/s00253-007-1031-8.

4. McAuliffe ORR, Fitzgerald GF: The new phage biology: from genomics to applications. 2007, Norfolk, UK: Caister Academic Press

5. McKinstry MER: Phages: their role in bacterial pathogenesis and biotechnology Use of phages in therapy and bacterial detection. 2005, Washington DC: ASM press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3