Multiplex HPV RNA in situ hybridization/p16 immunohistochemistry: a novel approach to detect papillomavirus in HPV-related cancers. A novel multiplex ISH/IHC assay to detect HPV

Author:

Zito Marino Federica,Ronchi Andrea,Stilo Marianna,Cozzolino Immacolata,La Mantia Elvira,Colacurci Nicola,Colella Giuseppe,Franco RenatoORCID

Abstract

Abstract Background High-risk human papillomavirus (HR-HPV) is notoriously associated with tumor progression in a broad spectrum of malignancies. Detection of HR-HPV is clinically important in the management of HPV-related carcinomas, particularly in cervical cancer and oropharyngeal squamous cell carcinoma (OPSCC). Several methods for HPV detection are currently available including Polymerase chain reaction (PCR)-based techniques, DNA in situ hybridization (ISH), RNA ISH, and p16 immunohistochemistry (IHC). Currently, the guidelines for HPV detection in cervical carcinoma are available, while no clear consensus has not yet been reached on the gold standard for HPV testing in OPSCC. Multimodality testing could help to reliably identify patients with transcriptionally active high-risk HPV-positive. Methods We propose a multiplex approach carrying out HPV RNA ISH and p16 IHC on the same slide to detect simultaneously HPV E6/E7 transcripts and p16INK4a overexpression. We tested this assay in two different series one of the cervical cancers with p16-positive, as control, and the other of oropharyngeal squamous cell carcinomas with blind p16 status. Results The multiplex HPV RNA ISH /p16 IHC results in the series both of the cervical cancers and the oral-oropharyngeal cancers were fully concordant with the previous results achieved through the classic p16 IHC and HPV RNA scope carried out on two different slides. Conclusions Our results suggesting several advantages of this technical approach, namely an easy interpretation fully in the light field, the feasibility in formalin-fixed paraffin-embedded tissue sections, complete automation and a potential wide spreadable for routine testing in several clinical laboratories.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Infectious Diseases,Oncology,Epidemiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3